lrtree.logreg

implements segment-specific, possibly single-class, logistic regression

class lrtree.logreg.PossiblyOneClassReg(**kwargs)[source]

One class logistic regression (e.g. when a leaf is pure)

Methods

decision_function(X)

Predict confidence scores for samples.

densify()

Convert coefficient matrix to dense array format.

fit(X, y[, weights])

Fit the one class regression: put the label of the single class and the number of features

get_params([deep])

Get parameters for this estimator.

predict(X)

Predict the single class if there's only one class, or predicts

predict_log_proba(X)

Predict logarithm of probability estimates.

predict_proba(X)

Predict the single class with a 1 probability

score(X, y[, sample_weight])

Return the mean accuracy on the given test data and labels.

set_params(**params)

Set the parameters of this estimator.

sparsify()

Convert coefficient matrix to sparse format.

fit(X: np.ndarray | pd.DataFrame, y: np.ndarray, weights: np.ndarray = None)[source]

Fit the one class regression: put the label of the single class and the number of features

predict(X: np.ndarray | pd.DataFrame) np.ndarray[source]

Predict the single class if there’s only one class, or predicts

Parameters

X (numpy.ndarray or pandas.DataFrame) –

Returns

column of class prediction

Return type

numpy.ndarray

predict_proba(X: np.ndarray | pd.DataFrame)[source]

Predict the single class with a 1 probability

Parameters

X (numpy.ndarray or pandas.DataFrame) –

Returns

two columns, one of which full of ones

Return type

numpy.ndarray

class lrtree.logreg.LogRegSegment(**kwargs)[source]

Logistic Regression for a given segment; fine-tuned PossiblyOneClassReg, itself from sklearn.LogisticRegression, allowing (1) to have only one class and (2) to embed data processing (merging, discretization).

Methods

decision_function(X)

Predict confidence scores for samples.

densify()

Convert coefficient matrix to dense array format.

fit(**kwargs)

Fits the LogRegSegment by preprocessing the data (if need be / asked for) and calling fit on sklearn

get_params([deep])

Get parameters for this estimator.

predict(X)

Predicts the LogRegSegment by preprocessing the data (if need be / asked for) and calling predict on sklearn

predict_log_proba(X)

Predict logarithm of probability estimates.

predict_proba(X)

Predicts the LogRegSegment by preprocessing the data (if need be / asked for) and calling predict_proba on sklearn

score(X, y[, sample_weight])

Return the mean accuracy on the given test data and labels.

set_params(**params)

Set the parameters of this estimator.

sparsify()

Convert coefficient matrix to sparse format.

fit(**kwargs)[source]

Fits the LogRegSegment by preprocessing the data (if need be / asked for) and calling fit on sklearn

predict(X: np.ndarray | pd.DataFrame) np.ndarray[source]

Predicts the LogRegSegment by preprocessing the data (if need be / asked for) and calling predict on sklearn

predict_proba(X: np.ndarray | pd.DataFrame) np.ndarray[source]

Predicts the LogRegSegment by preprocessing the data (if need be / asked for) and calling predict_proba on sklearn

Classes

LogRegSegment(**kwargs)

Logistic Regression for a given segment; fine-tuned PossiblyOneClassReg, itself from sklearn.LogisticRegression, allowing (1) to have only one class and (2) to embed data processing (merging, discretization).

PossiblyOneClassReg(**kwargs)

One class logistic regression (e.g.