R/method_predict.R
predict.Rd
This defines the method "discretize" which will discretize a new input dataset given a discretization scheme of S4 class glmdisc
This defines the method "predict" which will predict the discretization of a new input dataset given a discretization scheme of S4 class glmdisc
predict(object, ...) predict.glmdisc(object, predictors) # S4 method for glmdisc predict(object, predictors)
object | The S4 discretization object. |
---|---|
... | Essai |
predictors | The test dataframe to discretize and for which we wish to have predictions. |
This function discretizes a user-provided test dataset given a discretization scheme provided by an S4 "glmdisc" object.
It then applies the learnt logistic regression model and outputs its prediction (see predict.glm
).
This function discretizes a user-provided test dataset given a discretization scheme provided by an S4 "glmdisc" object.
It then applies the learnt logistic regression model and outputs its prediction (see predict.glm
).
# Simulation of a discretized logit model set.seed(1) x <- matrix(runif(300), nrow = 100, ncol = 3) cuts <- seq(0, 1, length.out = 4) xd <- apply(x, 2, function(col) as.numeric(cut(col, cuts))) theta <- t(matrix(c(0, 0, 0, 2, 2, 2, -2, -2, -2), ncol = 3, nrow = 3)) log_odd <- rowSums(t(sapply(seq_along(xd[, 1]), function(row_id) { sapply( seq_along(xd[row_id, ]), function(element) theta[xd[row_id, element], element] ) }))) y <- rbinom(100, 1, 1 / (1 + exp(-log_odd))) sem_disc <- glmdisc(x, y, iter = 50, m_start = 4, test = FALSE, validation = FALSE, criterion = "aic" ) predict(sem_disc, data.frame(x))#> [1] 6.090519e-01 4.675521e-01 5.877959e-01 2.143074e-01 6.090519e-01 #> [6] 1.111129e-01 1.111129e-01 5.573432e-01 1.885641e-01 6.090519e-01 #> [11] 6.090519e-01 4.675743e-01 5.877959e-01 6.090519e-01 1.111129e-01 #> [16] 1.000000e+00 1.885641e-01 1.111129e-01 6.090519e-01 2.143074e-01 #> [21] 2.143074e-01 6.090519e-01 1.885641e-01 4.675521e-01 6.090519e-01 #> [26] 6.090519e-01 6.090519e-01 3.311058e-01 1.111129e-01 6.090519e-01 #> [31] 1.000000e+00 8.854023e-01 1.000000e+00 6.090519e-01 2.143074e-01 #> [36] 1.885641e-01 2.143074e-01 6.090519e-01 1.885641e-01 6.090519e-01 #> [41] 2.143074e-01 1.885641e-01 1.111129e-01 1.000000e+00 1.000000e+00 #> [46] 2.143074e-01 4.675521e-01 4.359464e-07 5.877959e-01 1.885641e-01 #> [51] 1.000000e+00 2.143074e-01 1.000000e+00 6.090519e-01 6.090519e-01 #> [56] 3.311058e-01 6.090519e-01 1.000000e+00 5.877959e-01 4.675521e-01 #> [61] 1.111129e-01 6.090519e-01 1.000000e+00 6.090519e-01 1.885641e-01 #> [66] 6.090519e-01 1.000000e+00 5.877959e-01 6.090519e-01 1.111129e-01 #> [71] 4.675743e-01 1.730525e-11 6.090519e-01 6.090519e-01 1.000000e+00 #> [76] 2.143074e-01 2.143074e-01 6.090519e-01 2.143074e-01 2.143074e-01 #> [81] 1.000000e+00 5.877959e-01 6.090519e-01 6.090519e-01 5.573432e-01 #> [86] 4.675521e-01 1.885641e-01 6.090519e-01 4.675743e-01 6.090519e-01 #> [91] 6.090519e-01 4.675743e-01 5.877959e-01 2.143074e-01 1.111129e-01 #> [96] 2.143074e-01 1.000000e+00 4.675743e-01 7.930697e-12 1.885641e-01