Discrétisation, regroupement de modalités et

 introduction d'interactions en régression logistique
Adrien Ehrhardt ${ }^{1,2}$

Christophe Biernacki²
Philippe Heinrich ${ }^{3}$
Vincent Vandewalle ${ }^{2,4}$
${ }^{1}$ Crédit Agricole Consumer Finance
${ }^{2}$ Inria Lille - Nord-Europe
${ }^{3}$ Université de Lille, Paul Painlevé
${ }^{4}$ Université de Lille, EA2694

03/10/2018

Table of Contents

Context and basic notations

Supervised multivariate discretization and factor levels grouping

Selecting interactions in logistic regression

Conclusion and future work

Context and basic notations

Current practice

Job	Home	Time in job	Family status	Wages		Repayment
Craftsman	Owner	20	Widower	2000	0	
$?$	Renter	10	Common-law	1700	0	
Licensed profes- sional	Starter	5	Divorced	4000	1	
Executive	By work	8	Single	2700	1	
Office employee	Renter	12	Married	1400	0	
Worker	By family	2	$?$	1200	0	

Table: Dataset with outliers and missing values.

Current practice

Job	Home	Time in job	Family status	Wages		Repayment
Craftsman	Owner	20	Widower	2000	0	
$?$	Renter	10	Common-law	1700	0	
Licensed profes- sional	Starter	5	Divorced	4000	1	
Executive	By work	8	Single	2700	1	
Office employee	Renter	12	Married	1400	0	
Worker	By family	2	$?$	1200	0	

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Job		Family status	Wages		Repayment	
Craftsman			Widower	2000	0	
$?$		Common-law	1700		0	
Licensed profes-			Divorced	4000	1	
sional			Single	2700		1
Executive			Married	1400	0	
Office employee			$?$	1200	0	

Table: Dataset with outliers and missing values.

1. Feature selection

2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Feature	Level	Points
Age	$18-25$	10
	$25-45$	20
	$45-+\infty$	30
Wages	$-\infty-1000$	15
	$1000-2000$	25
	$2000-+\infty$	35
Glucose level	\ldots	\ldots
	\ldots	\ldots

Table: Final scorecard.

Mathematical reinterpretation

The whole process can be decomposed into two steps:

$$
\left.\begin{array}{rl}
\mathcal{X} & \rightarrow \mathcal{E} \\
\boldsymbol{x} & \mapsto \boldsymbol{e}=\boldsymbol{f}(\boldsymbol{x})
\end{array}\right) \mapsto y
$$

Mathematical reinterpretation

The whole process can be decomposed into two steps:

$$
\left.\begin{array}{rl}
\mathcal{X} & \rightarrow \mathcal{E} \\
\boldsymbol{x} & \mapsto \boldsymbol{e}=\boldsymbol{f}(\boldsymbol{x})
\end{array}\right) \mapsto y
$$

Selected features: $\boldsymbol{x}=\left(x_{j}\right)_{1}^{d}$ (continuous or categorical).

Mathematical reinterpretation

The whole process can be decomposed into two steps:

$$
\left.\begin{array}{rl}
\mathcal{X} & \rightarrow \mathcal{E} \\
\boldsymbol{x} & \mapsto \boldsymbol{e}=\boldsymbol{f}(\boldsymbol{x})
\end{array}\right) \mapsto y
$$

Selected features: $\boldsymbol{x}=\left(x_{j}\right)_{1}^{d}$ (continuous or categorical).
\boldsymbol{f} is "component-wise", i.e. $\boldsymbol{f}(\boldsymbol{x})=\left(f_{j}\left(x_{j}\right)\right)_{1}^{d}$.
We restrict to discretization and grouping of factor levels.

Mathematical reinterpretation：Feature Engineering

$$
f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=3
$$

Mathematical reinterpretation: Feature Engineering

$$
f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=3 \longrightarrow x_{j}
$$

Discretization

Into m intervals with associated cutpoints
$\boldsymbol{c}=\left(c_{0}=-\infty, c_{1}, \ldots, c_{m-1}, c_{m}=+\infty\right)$.
Discretization function

$$
\begin{aligned}
f_{j}(\cdot ; \boldsymbol{c}, m): \mathbb{R} & \rightarrow\{1, \ldots, m\} \\
x & \mapsto \sum_{k=1}^{m} k \mathbb{1}_{] c_{k-1} ; c_{k}\right]}(x)
\end{aligned}
$$

Mathematical reinterpretation: Feature Engineering

Mathematical reinterpretation: Feature Engineering

Grouping
Grouping o values into $m, m \leq o$.

Grouping function

$f_{j}:\{1, \ldots, o\} \rightarrow\{1, \ldots, m\}$
f_{j} surjective: it defines a partition of $\{1, \ldots, o\}$ in m elements.

Mathematical reinterpretation: Engineered Feature Space

Discretization
$f_{j} \in \mathcal{M}_{j}=\left\{f_{j}\left(\cdot ; \boldsymbol{c}_{j}, m_{j}\right) \mid m_{j} \in \mathbb{N}, c_{j, 1}<\ldots<c_{j, m_{j}-1}\right\}$

Mathematical reinterpretation: Engineered Feature Space

Discretization
$f_{j} \in \mathcal{M}_{j}=\left\{f_{j}\left(\cdot ; \boldsymbol{c}_{j}, m_{j}\right) \mid m_{j} \in \mathbb{N}, c_{j, 1}<\ldots<c_{j, m_{j}-1}\right\}$
\mathcal{M}_{j} is seemingly continuous but with a finite sample, a countable Feature Space can be recovered by remarking:

Mathematical reinterpretation：Engineered Feature Space

Discretization

$f_{j} \in \mathcal{M}_{j}=\left\{f_{j}\left(\cdot ; \boldsymbol{c}_{j}, m_{j}\right) \mid m_{j} \in \mathbb{N}, c_{j, 1}<\ldots<c_{j, m_{j}-1}\right\}$
\mathcal{M}_{j} is seemingly continuous but with a finite sample，a countable Feature Space can be recovered by remarking：

$$
f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2
$$

Mathematical reinterpretation：Engineered Feature Space

Discretization

$f_{j} \in \mathcal{M}_{j}=\left\{f_{j}\left(\cdot ; \boldsymbol{c}_{j}, m_{j}\right) \mid m_{j} \in \mathbb{N}, c_{j, 1}<\ldots<c_{j, m_{j}-1}\right\}$
\mathcal{M}_{j} is seemingly continuous but with a finite sample，a countable Feature Space can be recovered by remarking：

$$
g_{j}\left(x_{j}\right)=1 \quad g_{j}\left(x_{j}\right)=2
$$

Mathematical reinterpretation: Engineered Feature Space

Discretization
$f_{j} \in \mathcal{M}_{j}=\left\{f_{j}\left(\cdot ; \boldsymbol{c}_{j}, m_{j}\right) \mid m_{j} \in \mathbb{N}, c_{j, 1}<\ldots<c_{j, m_{j}-1}\right\}$
\mathcal{M}_{j} is seemingly continuous but with a finite sample, a countable Feature Space can be recovered by remarking:

$$
h_{j}\left(x_{j}\right)=1 \quad h_{j}\left(x_{j}\right)=2
$$

Mathematical reinterpretation: Engineered Feature Space

Discretization
$f_{j} \in \mathcal{M}_{j}=\left\{f_{j}\left(\cdot ; \boldsymbol{c}_{j}, m_{j}\right) \mid m_{j} \in \mathbb{N}, c_{j, 1}<\ldots<c_{j, m_{j}-1}\right\}$
\mathcal{M}_{j} is seemingly continuous but with a finite sample, a countable Feature Space can be recovered by remarking:

$$
h_{j}\left(x_{j}\right)=1 \quad h_{j}\left(x_{j}\right)=2
$$

Example $(n=20, d=10): \approx 10^{57}$ models in \mathcal{M}_{j}^{d}.

Mathematical reinterpretation: Engineered Feature Space

Grouping

$f_{j} \in \mathcal{M}_{j}=\left\{\right.$ Partitions from $\left\{1, \ldots, o_{j}\right\}$ to $\left.\left\{1, \ldots, m_{j}\right\} ; m_{j} \leq o_{j}\right\}$.

Mathematical reinterpretation: Engineered Feature Space

Grouping

$f_{j} \in \mathcal{M}_{j}=\left\{\right.$ Partitions from $\left\{1, \ldots, o_{j}\right\}$ to $\left.\left\{1, \ldots, m_{j}\right\} ; m_{j} \leq o_{j}\right\}$.
Its cardinality is given by the Stirling number of the second kind: $\left|\mathcal{M}_{j}\right|=\sum_{m_{j}=1}^{o_{j}} \frac{1}{m_{j}!} \sum_{i=0}^{m_{j}}(-1)^{m_{j}-i}\binom{m_{j}}{i} i^{o_{j}}$.

Mathematical reinterpretation: Engineered Feature Space

Grouping

$f_{j} \in \mathcal{M}_{j}=\left\{\right.$ Partitions from $\left\{1, \ldots, o_{j}\right\}$ to $\left.\left\{1, \ldots, m_{j}\right\} ; m_{j} \leq o_{j}\right\}$.
Its cardinality is given by the Stirling number of the second kind: $\left|\mathcal{M}_{j}\right|=\sum_{m_{j}=1}^{o_{j}} \frac{1}{m_{j}!} \sum_{i=0}^{m_{j}}(-1)^{m_{j}-i}\binom{m_{j}}{i} i^{o_{j}}$.

Exhaustive search is untractable.

Mathematical reinterpretation: Objective

Target feature $y \in\{0,1\}$ must be predicted given engineered features $\boldsymbol{f}(\boldsymbol{x})=\left(f_{j}\left(x_{j}\right)\right)_{1}^{d}$.

Mathematical reinterpretation: Objective

Target feature $y \in\{0,1\}$ must be predicted given engineered features $\boldsymbol{f}(\boldsymbol{x})=\left(f_{j}\left(x_{j}\right)\right)_{1}^{d}$.

On "raw" data, logistic regression yields:

$$
\operatorname{logit}\left(p_{\theta_{\text {raw }}}(1 \mid x)\right)=\theta_{0}+\sum_{j \text { cont. }} \theta_{j} x_{j}+\sum_{j \text { cat. }} \theta_{j}^{x_{j}}
$$

Mathematical reinterpretation：Objective

Target feature $y \in\{0,1\}$ must be predicted given engineered features $\boldsymbol{f}(\boldsymbol{x})=\left(f_{j}\left(x_{j}\right)\right)_{1}^{d}$ ．

On＂raw＂data，logistic regression yields：

$$
\operatorname{logit}\left(p_{\theta_{\text {raw }}}(1 \mid x)\right)=\theta_{0}+\sum_{j \text { cont. }} \theta_{j} x_{j}+\sum_{j \text { cat. }} \theta_{j}^{x_{j}}
$$

On discretized／grouped data，logistic regression yields：

$$
\operatorname{logit}\left(p_{\theta_{f}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\sum_{j=1}^{d} \theta_{j}^{f_{j}\left(x_{j}\right)}
$$

Mathematical reinterpretation: Objective

Probability of passing exam versus hours of studying

Example

True data

$$
\operatorname{logit}\left(p_{\text {true }}(1 \mid x)\right)=\ln \left(\frac{p_{\text {true }}(1 \mid x)}{1-p_{\text {true }}(1 \mid x)}\right)=\sin \left(\left(x_{1}-0.7\right) \times 7\right)
$$

Figure：True relationship between predictor and outcome

Example

Logistic regression on "raw" data:

$$
\operatorname{logit}\left(p_{\theta_{\mathrm{raw}}}(1 \mid \boldsymbol{x})\right)=\theta_{0}+\theta_{1} x_{1}
$$

Figure: Linear logistic regression fit

Example

Logistic regression on discretized data:

If \boldsymbol{f} is not carefully chosen ...

$$
\operatorname{logit}\left(p_{\boldsymbol{\theta}_{\boldsymbol{f}}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\underbrace{\theta_{1}^{f_{1}\left(x_{1}\right)}}_{\theta_{1}^{1}, \ldots, \theta_{1}^{50}}
$$

Figure: Bad (high variance) discretization

Example

Logistic regression on discretized data:

If \boldsymbol{f} is carefully chosen ...

$$
\operatorname{logit}\left(p_{\theta_{f}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\underbrace{}_{\theta_{1}^{1}, \ldots, \theta_{1}}
$$

Figure: Good (bias/variance tradeoff) discretization

Criterion

$\boldsymbol{\theta}$ can be estimated for each discretization \boldsymbol{f} and \boldsymbol{f}^{\star} can be chosen through our favorite model choice criterion e.g. BIC.

Criterion

$\boldsymbol{\theta}$ can be estimated for each discretization \boldsymbol{f} and \boldsymbol{f}^{\star} can be chosen through our favorite model choice criterion e.g. BIC.

A model selection problem

$$
\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{f \in F, \boldsymbol{\theta} \in \Theta}{\operatorname{argmin}}-2 \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{f}\left(\mathbf{x}_{i}\right)\right)+|\boldsymbol{\theta}| \times \ln (n)
$$

where $\boldsymbol{\theta}$ is classicaly estimated via MLE.

Criterion

$\boldsymbol{\theta}$ can be estimated for each discretization \boldsymbol{f} and \boldsymbol{f}^{\star} can be chosen through our favorite model choice criterion e.g. BIC.

A model selection problem

where $\boldsymbol{\theta}$ is classicaly estimated via MLE.
Compromise between (over-)fitting the data and model complexity (and explainability in a sense!).

Criterion

$\boldsymbol{\theta}$ can be estimated for each discretization \boldsymbol{f} and \boldsymbol{f}^{\star} can be chosen through our favorite model choice criterion e.g. BIC.

A model selection problem

$$
\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{f \in \mathcal{F}_{, \boldsymbol{\theta} \in \Theta}}{\operatorname{argmin}}-2 \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{f}\left(\boldsymbol{x}_{i}\right)\right)+|\boldsymbol{\theta}| \times \ln (n),
$$

where $\boldsymbol{\theta}$ is classicaly estimated via MLE.
Compromise between (over-)fitting the data and model complexity (and explainability in a sense!).
\mathcal{F} is discrete and combinatorial: how can we get around this problem?

State-of-the art

Current academic methods:

A lot of existing heuristics, see [Ramírez-Gallego et al., 2016]:

State-of-the art

Quick example of χ^{2} :

Category	\# samples	\# cases	p-value
$18-20$	10	5	0.3
$20-22$	10	6	0.2
$22-24$	10	4	
\ldots	\ldots	\ldots	\ldots

Supervised multivariate discretization and factor levels grouping

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Discretization / grouping e_{j} can be seen as a latent random variable for which

$$
p\left(e_{j} \mid x_{j}\right)=\mathbb{1}_{e_{j}}\left(f_{j}\left(x_{j}\right)\right) .
$$

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Discretization / grouping e_{j} can be seen as a latent random variable for which

$$
p\left(e_{j} \mid x_{j}\right)=\underbrace{\mathbb{1}_{e_{j}}\left(f_{j}\left(x_{j}\right)\right)}_{\begin{array}{c}
\text { Heaviside-like function } \\
\text { difficult to optimize }
\end{array}} .
$$

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Discretization / grouping e_{j} can be seen as a latent random variable for which

$$
p\left(e_{j} \mid x_{j}\right)=\underbrace{\mathbb{1}_{e_{j}}\left(f_{j}\left(x_{j}\right)\right)}_{\begin{array}{c}
\text { Heaviside-like function } \\
\text { difficult to optimize }
\end{array}} .
$$

Suppose for now that $\boldsymbol{m}=\left(m_{j}\right)_{1}^{d}$ is fixed.

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Discretization / grouping e_{j} can be seen as a latent random variable for which

$$
p\left(e_{j} \mid x_{j}\right)=\underbrace{\mathbb{1}_{e_{j}}\left(f_{j}\left(x_{j}\right)\right)}_{\begin{array}{c}
\text { Heaviside-like function } \\
\text { difficult to optimize }
\end{array}} .
$$

Suppose for now that $\boldsymbol{m}=\left(m_{j}\right)_{1}^{d}$ is fixed.

$$
\boldsymbol{e} \in \boldsymbol{\mathcal { E }}_{\boldsymbol{m}}=\left\{1, \ldots, m_{1}\right\} \times \ldots \times \ldots \times\left\{1, \ldots, m_{d}\right\}
$$

First set of hypotheses

H1: implicit hypothesis of every discretization:
Predictive information about \boldsymbol{y} in \boldsymbol{x} is "squeezed" in \boldsymbol{e}, i.e. $p_{\text {true }}(y \mid \boldsymbol{x}, \boldsymbol{e})=p_{\text {true }}(y \mid \boldsymbol{e})$.

First set of hypotheses

H1: implicit hypothesis of every discretization:
Predictive information about \boldsymbol{y} in \boldsymbol{x} is "squeezed" in \boldsymbol{e}, i.e. $p_{\text {true }}(y \mid \boldsymbol{x}, \boldsymbol{e})=p_{\text {true }}(y \mid \boldsymbol{e})$.

H2: conditional independence:
Conditional independence of $e_{j} \mid x_{j}$ with other features $x_{k}, k \neq j$.

First set of hypotheses

H1：implicit hypothesis of every discretization：
Predictive information about \boldsymbol{y} in \boldsymbol{x} is＂squeezed＂in \boldsymbol{e} ，i．e． $p_{\text {true }}(y \mid \boldsymbol{x}, \boldsymbol{e})=p_{\text {true }}(y \mid \boldsymbol{e})$ ．

H2：conditional independence：
Conditional independence of $e_{j} \mid x_{j}$ with other features $x_{k}, k \neq j$ ．

Figure：Dependance structure between x_{j}, e_{j} and y

Proposal: continuous relaxation

H3: link between x_{j} and e_{j} :

Proposal: continuous relaxation

H3: link between x_{j} and e_{j} :
Continuous relaxation of a discrete problem (cf neural nets)

Continuous features: relaxation of the "hard" discretization

Link between e_{j} and x_{j} is supposed to be polytomous logistic:

$$
p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right) .
$$

Proposal: continuous relaxation

H3: link between x_{j} and e_{j} :
Continuous relaxation of a discrete problem (cf neural nets)

Continuous features: relaxation of the "hard" discretization

Link between e_{j} and x_{j} is supposed to be polytomous logistic:

$$
p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right) .
$$

Categorical features: relaxation of the grouping problem
A simple contingency table is used:

$$
p_{\alpha_{j}}\left(e_{j}=k \mid x_{j}=\ell\right)=\alpha_{j}^{k, \ell} .
$$

Intuitions about how it works: model proposal

$$
\begin{aligned}
p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha}) & =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid \boldsymbol{x}, \boldsymbol{e}) p(\boldsymbol{e} \mid \boldsymbol{x}) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p\left(e_{j} \mid x_{j}\right) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} \underbrace{p_{\theta_{\boldsymbol{e}}}(y \mid \boldsymbol{e})}_{\text {logistic }} \prod_{j=1}^{d} \underbrace{p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}_{\text {logistic or table }} \\
& \approx p_{\boldsymbol{\theta}^{\star}}\left(y \mid \boldsymbol{e}^{\star}\right)
\end{aligned}
$$

Intuitions about how it works: model proposal

$$
\begin{aligned}
p(y \mid x, \theta, \alpha) & =\sum_{\boldsymbol{e} \in \mathcal{E}_{\boldsymbol{m}}} p(y \mid x, \boldsymbol{e}) p(\boldsymbol{e} \mid x) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p\left(e_{j} \mid x_{j}\right) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} \underbrace{p_{\theta_{e}}(y \mid \boldsymbol{e})}_{\log \text { istic }} \prod_{j=1}^{d} \underbrace{p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}_{\text {logistic or table }} \\
& \approx p_{\boldsymbol{\theta}^{\star}}\left(y \mid \boldsymbol{e}^{\star}\right)
\end{aligned}
$$

Subsequently, it is equivalent to "optimize" $p(y \mid x, \boldsymbol{\theta}, \boldsymbol{\alpha})$.

Intuitions about how it works: model proposal

$$
\begin{aligned}
p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \alpha) & =\sum_{\boldsymbol{e} \in \mathcal{E}_{\boldsymbol{m}}} p(y \mid \boldsymbol{x}, \boldsymbol{e}) p(\boldsymbol{e} \mid x) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p\left(e_{\mathrm{e} \mid} \mid x_{j}\right) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} \underbrace{p_{\theta_{\mathrm{e}}}(y \mid \boldsymbol{e})}_{\log \text { istic }} \prod_{j=1}^{d} \underbrace{p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}_{\text {logistic or table }} \\
& \approx p_{\boldsymbol{\theta}^{\star}}\left(y \mid \boldsymbol{e}^{\star}\right)
\end{aligned}
$$

Subsequently, it is equivalent to "optimize" $p(y \mid x, \boldsymbol{\theta}, \boldsymbol{\alpha})$.

$$
\max _{\theta, e} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \simeq \max _{\boldsymbol{\theta}, \boldsymbol{\alpha}} p(y \mid x, \boldsymbol{\theta}, \alpha)
$$

Go back to "hard" thresholding: MAP estimation

$$
\begin{aligned}
& \hat{f}_{j}\left(x_{j}\right)=\underset{1 \leq k \leq m_{j}}{\operatorname{argmax}} p_{\alpha_{j}}\left(k \mid x_{j}\right) \\
& \frac{\overparen{8}}{\stackrel{\rightharpoonup}{7}} \\
& \underbrace{\hat{f}_{1}\left(\lambda_{1}\right)=1}_{-0.7} \begin{array}{c}
\hat{f}_{1}\left(x_{1}\right)=2 \\
1
\end{array} \\
& \underbrace{\hat{f}_{1}\left(x_{1}\right)=1}_{-0.7} \hat{f}_{1}\left(x_{1}\right)=2 x_{1} \\
& x_{1}
\end{aligned}
$$

Estimation of the proposed model

Two very different estimation strategies

Estimation of the proposed model

Two very different estimation strategies

1. In the statistics community: latent feature $=\mathrm{EM}$-like algorithm. We try to get $\max _{\boldsymbol{\theta}, \alpha} p(y \mid \boldsymbol{x} ; \boldsymbol{\theta}, \boldsymbol{\alpha})$ through SEM algorithm + Gibbs sampling step that explicity draws \boldsymbol{e}.

Estimation of the proposed model

Two very different estimation strategies

1．In the statistics community：latent feature $=\mathrm{EM}$－like algorithm．
We try to get $\max _{\boldsymbol{\theta}, \alpha} p(y \mid \boldsymbol{x} ; \boldsymbol{\theta}, \boldsymbol{\alpha})$ through SEM algorithm + Gibbs sampling step that explicity draws \boldsymbol{e} ．

2．Machine Learning：neural networks natively learn representations of the data．

A 1－hidden layer neural network with softmax activation function that via Stochastic Gradient Descent tries to maximize the likelihood of $p_{\theta}\left(y \mid \tilde{e}=\left(p_{\alpha_{j}}\left(1 \mid x_{j}\right), \ldots, p_{\alpha_{j}}\left(m_{j} \mid x_{j}\right)\right)_{1}^{d}\right)$ ．

Estimation via SEM

＂Classical＂estimation strategy with latent variables：EM algorithm．

Estimation via SEM

"Classical" estimation strategy with latent variables: EM algorithm.
There would still be a sum over \mathcal{E}_{m} : $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha})=\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)$

Estimation via SEM

"Classical" estimation strategy with latent variables: EM algorithm.
There would still be a sum over $\mathcal{E}_{\boldsymbol{m}}$: $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha})=\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)$

Use a Stochastic-EM! Draw e knowing that:

Estimation via SEM

"Classical" estimation strategy with latent variables: EM algorithm.
There would still be a sum over $\mathcal{E}_{\boldsymbol{m}}$: $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha})=\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)$

Use a Stochastic-EM! Draw e knowing that:

$$
p(\boldsymbol{e} \mid \boldsymbol{x}, y)=\underbrace{\frac{p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}{\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}}_{\text {still difficult to calculate }}
$$

Estimation via SEM

"Classical" estimation strategy with latent variables: EM algorithm.
There would still be a sum over $\mathcal{E}_{\boldsymbol{m}}$: $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha})=\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)$

Use a Stochastic-EM! Draw e knowing that:

$$
p(\boldsymbol{e} \mid \boldsymbol{x}, y)=\underbrace{\frac{p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}{\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}}_{\text {still difficult to calculate }}
$$

Gibbs-sampling step:

$$
p\left(e_{j} \mid \boldsymbol{x}, y, \boldsymbol{e}_{\{-j\}}\right) \propto p_{\theta}(y \mid \boldsymbol{e}) p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)
$$

Algorithm

Initialization

$$
\left(\begin{array}{ccc}
x_{1, \mathbf{1}} & \cdots & x_{\mathbf{1}, d} \\
\vdots & \vdots & \vdots \\
x_{n, \mathbf{1}} & \cdots & x_{n, d}
\end{array}\right) \stackrel{\text { at } \underset{\text { random }}{\Rightarrow}}{\Rightarrow}\left(\begin{array}{ccc}
e_{\mathbf{1}, \mathbf{1}} & \cdots & e_{\mathbf{1}, d} \\
\vdots & \vdots & \vdots \\
e_{n, \mathbf{1}} & \cdots & e_{n, d}
\end{array}\right)
$$

Loop

$$
\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \underset{\substack{\text { logistic } \\
\text { regression }}}{\Rightarrow}\left(\begin{array}{ccc}
e_{1,1} & \cdots & e_{1, d} \\
\vdots & \vdots & \vdots \\
e_{n, 1} & \cdots & e_{n, d}
\end{array}\right) \underset{\substack{\text { polytomous } \\
\text { regression }}}{\Rightarrow}\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \vdots & \vdots \\
x_{n, 1} & \cdots & x_{n, d}
\end{array}\right)
$$

Updating e

$$
\left(\begin{array}{c}
p\left(y_{\mathbf{1}}, e_{\mathbf{1}, j}=k \mid x_{i}\right) \\
\vdots \\
p\left(y_{n}, e_{n, j}=k \mid x_{i}\right)
\end{array}\right) \underset{\substack{\text { random } \\
\text { sampling }}}{\Rightarrow}\left(\begin{array}{c}
e_{\mathbf{1}, j} \\
\vdots \\
e_{n, j}
\end{array}\right)
$$

Calculating $e_{\text {MAP }}$

$$
\left.\left(\begin{array}{c}
\hat{f}_{j}\left(x_{\mathbf{1}, j}\right) \\
\vdots \\
\hat{f}_{j}\left(x_{n, j}\right)
\end{array}\right) \underset{\text { MAP }}{\text { estimate }} \begin{array}{c}
\operatorname{argmax}_{e_{j}} p_{\alpha_{j}}\left(e_{j} \mid x_{\mathbf{1}, j}\right) \\
\operatorname{argmax}_{e_{j}} p_{\alpha_{j}}\left(e_{j} \mid x_{n, j}\right)
\end{array}\right)
$$

Estimation via neural nets

In the end: the best discretization

New model selection criterion

We have drastically restricted the search space to provably clever candidates $\hat{\boldsymbol{f}}^{(1)}, \ldots, \hat{\boldsymbol{f}}^{\text {(iter) }}$ resulting either from the Gibbs sampling or the neural network and MAP estimation.

$$
\begin{aligned}
\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)= & \underset{\left.\hat{f} \in\left\{\hat{f}^{(1)}\right\} \ldots \hat{f}^{(i t e r)}\right\}, \boldsymbol{\theta} \in \Theta_{m}}{\operatorname{argmin}}-2 \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \hat{\boldsymbol{f}}\left(\boldsymbol{x}_{i}\right)\right) \\
& +\left(m_{1} \times \cdots \times m_{d}-d\right) \times \ln (n)
\end{aligned}
$$

In the end: the best discretization

New model selection criterion

We have drastically restricted the search space to provably clever candidates $\hat{\boldsymbol{f}}^{(1)}, \ldots, \hat{\boldsymbol{f}}^{\text {(iter) }}$ resulting either from the Gibbs sampling or the neural network and MAP estimation.

$$
\begin{aligned}
&\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)= \operatorname{argmin} \\
&\left.\hat{f}_{\in\{ } \hat{f}^{(1)} \hat{\hat{f}^{(i t e r)}}\right\}, \boldsymbol{\theta} \in \Theta_{m} \\
&+\left(m_{1} \times \cdots \times m_{d}-d\right) \times \ln (n)
\end{aligned}
$$

We would still need to loop over candidates m !

In the end: the best discretization

New model selection criterion

We have drastically restricted the search space to provably clever candidates $\hat{\boldsymbol{f}}^{(1)}, \ldots, \hat{\boldsymbol{f}}^{\text {(iter) }}$ resulting either from the Gibbs sampling or the neural network and MAP estimation.

$$
\begin{aligned}
&\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)= \operatorname{argmin} \\
&\left.\hat{f}_{\in\{ } \hat{f}^{(1)} \hat{\hat{f}^{(i t e r)}}\right\}, \boldsymbol{\theta} \in \Theta_{m} \\
&+\left(m_{1} \times \cdots \times m_{d}-d\right) \times \ln (n)
\end{aligned}
$$

We would still need to loop over candidates m !
In practice if $\forall i, p\left(e_{i, j}=1 \mid x_{i, j}, y_{i}\right) \ll 1$, then $e_{j}=1$ disappears. . .

In the end: the best discretization

New model selection criterion

We have drastically restricted the search space to provably clever candidates $\hat{\boldsymbol{f}}^{(1)}, \ldots, \hat{\boldsymbol{f}}^{\text {(iter) }}$ resulting either from the Gibbs sampling or the neural network and MAP estimation.

$$
\begin{aligned}
\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)= & \underset{\hat{f} \in\left\{\hat{f}^{(1)} \hat{f^{(t i e r)}}\right\}, \boldsymbol{\theta} \in \Theta_{m}}{\operatorname{argmin}}-2 \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \hat{\boldsymbol{f}}\left(\boldsymbol{x}_{i}\right)\right) \\
& +\left(m_{1} \times \cdots \times m_{d}-d\right) \times \ln (n)
\end{aligned}
$$

We would still need to loop over candidates m !
In practice if $\forall i, p\left(e_{i, j}=1 \mid x_{i, j}, y_{i}\right) \ll 1$, then $e_{j}=1$ disappears. . .
Start with $\boldsymbol{m}=\left(m_{\max }\right)_{1}^{d}$ and "wait" ... eventually until $\boldsymbol{m}=1$.

Selecting interactions in logistic regression

Notations

Upper triangular matrix with $\delta_{k, \ell}=1$ if $k<\ell$ and features p and q "interact" in the logistic regression.

$$
\operatorname{logit}\left(p_{\theta_{f}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\sum_{j=1}^{d} \theta_{j}^{f_{j}\left(x_{j}\right)}+\sum_{1 \leq k<\ell \leq d} \delta_{k, \ell} \theta_{k, \ell}^{f_{k}\left(x_{k}\right) f_{\ell}\left(x_{\ell}\right)}
$$

Notations

Upper triangular matrix with $\delta_{k, \ell}=1$ if $k<\ell$ and features p and q "interact" in the logistic regression.

$$
\operatorname{logit}\left(p_{\theta_{\boldsymbol{f}}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\sum_{j=1}^{d} \theta_{j}^{f_{j}\left(x_{j}\right)}+\sum_{1 \leq k<\ell \leq d} \delta_{k, \ell} \theta_{k, \ell}^{f_{k}\left(x_{k}\right) f_{\ell}\left(x_{\ell}\right)}
$$

Imagine for now that the discretization $\boldsymbol{f}(\boldsymbol{x})$ is fixed. The criterion becomes:

$$
\left(\boldsymbol{\theta}^{\star}, \boldsymbol{\delta}^{\star}\right)=\underset{\boldsymbol{\theta}, \delta \in\{0,1\}}{\operatorname{argmin}} \underset{\frac{d(d-1)}{2}}{ } \underbrace{-2 \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{f}\left(\boldsymbol{x}_{i}\right), \boldsymbol{\delta}\right)+|\boldsymbol{\theta}| \ln (n)}_{\mathrm{BIC}[\boldsymbol{\delta}]}
$$

Notations

Upper triangular matrix with $\delta_{k, \ell}=1$ if $k<\ell$ and features p and q "interact" in the logistic regression.

$$
\operatorname{logit}\left(p_{\theta_{\boldsymbol{f}}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\sum_{j=1}^{d} \theta_{j}^{f_{j}\left(x_{j}\right)}+\sum_{1 \leq k<\ell \leq d} \delta_{k, \ell} \theta_{k, \ell}^{f_{k}\left(x_{k}\right) f_{\ell}\left(x_{\ell}\right)}
$$

Imagine for now that the discretization $\boldsymbol{f}(\boldsymbol{x})$ is fixed. The criterion becomes:

$$
\left(\boldsymbol{\theta}^{\star}, \boldsymbol{\delta}^{\star}\right)=\underset{\boldsymbol{\theta}, \delta \in\{0,1\}}{\operatorname{argmin}}{\underset{\mathrm{d}(d-1)}{2}}^{-2 \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{f}\left(\boldsymbol{x}_{i}\right), \boldsymbol{\delta}\right)+|\boldsymbol{\theta}| \ln (n)}
$$

Analogous to previous problem: $2^{\frac{d(d-1)}{2}}$ models.

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!
Strategy used here: Metropolis-Hastings algorithm.

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!
Strategy used here: Metropolis-Hastings algorithm.

$$
\begin{aligned}
p(y \mid \boldsymbol{e}) & =\sum_{\delta \in\{0,1\}^{\frac{d(d-1)}{2}}} p(y \mid \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{\delta}) p(\boldsymbol{\delta}) \\
p(\boldsymbol{\delta} \mid \boldsymbol{f}(\boldsymbol{x}), y) & \propto p(y \mid \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{\delta}) p(\boldsymbol{\delta}) \\
& \approx \exp (-\mathrm{BIC}[\boldsymbol{\delta}] / 2) p(\boldsymbol{\delta})
\end{aligned}
$$

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!
Strategy used here: Metropolis-Hastings algorithm.

$$
\begin{aligned}
p(y \mid \boldsymbol{e}) & =\sum_{\delta \in\{0,1\}^{\frac{d(d-1)}{2}}} p(y \mid \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{\delta}) p(\boldsymbol{\delta}) \\
p(\boldsymbol{\delta} \mid \boldsymbol{f}(\boldsymbol{x}), y) & \propto p(y \mid \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{\delta}) p(\delta) \\
& \approx \exp (-\mathrm{BIC}[\boldsymbol{\delta}] / 2) p(\delta) \quad p\left(\delta_{p, q}\right)=\frac{1}{2}
\end{aligned}
$$

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!
Strategy used here: Metropolis-Hastings algorithm.

$$
\begin{aligned}
p(y \mid \boldsymbol{e}) & =\sum_{\delta \in\{0,1\}^{\frac{d(d-1)}{2}}} p(y \mid \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{\delta}) p(\boldsymbol{\delta}) \\
p(\boldsymbol{\delta} \mid \boldsymbol{f}(\boldsymbol{x}), y) & \propto p(y \mid \boldsymbol{f}(\boldsymbol{x}), \boldsymbol{\delta}) p(\delta) \\
& \approx \exp (-\mathrm{BIC}[\boldsymbol{\delta}] / 2) p(\delta) \quad p\left(\delta_{p, q}\right)=\frac{1}{2}
\end{aligned}
$$

Which transition proposal $q:\left(\{0,1\}^{\frac{d(d-1)}{2}},\{0,1\}^{\frac{d(d-1)}{2}}\right) \mapsto[0 ; 1]$?

Model proposal

$2^{d(d-1)}$ probabilities to calculate...

Model proposal

$2^{d(d-1)}$ probabilities to calculate...
We restrict changes to only one entry $\delta_{k, \ell}$.

Model proposal

$2^{d(d-1)}$ probabilities to calculate...
We restrict changes to only one entry $\delta_{k, \ell}$.
Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

Model proposal

$2^{d(d-1)}$ probabilities to calculate...
We restrict changes to only one entry $\delta_{k, \ell}$.
Proposal: gain/loss in BIC between bivariate models with / without the interaction.

Trick: alternate one discretization / grouping step and one "interaction" step.

Results: credit scoring datasets

Performance asserted on simulated data.
Good performance on real data:

Gini	Current performance	glmdisc	Basic glm
Auto $(\mathrm{n}=50,000 ; \mathrm{d}=15)$	57.9	64.84	58
Revolving $(\mathrm{n}=48,000 ; \mathrm{d}=9)$	58.57	67.15	53.5
Prospects $(\mathrm{n}=5,000 ; \mathrm{d}=25)$	35.6	47.18	32.7
Electronics $(\mathrm{n}=140,000 ; \mathrm{d}=8)$	57.5	58	-10
Young $(\mathrm{n}=5,000 ; \mathrm{d}=25)$	≈ 15	30	12.2
Basel II $(\mathrm{n}=70,000 ; \mathrm{d}=13)$	70	71.3	19

Relatively fast computing time: between 2 hours and a day on a laptop according to number of observations, features, ...
"Inexisting" human time.

Results: medicine datasets

	Pima	Breast	Heart	Birthwt
Naïve LR	0.73	0.94	0.78	0.34
Naïve LR w. interactions	0.60	0.51	0.47	0.15
gImdisc	0.57	0.93	0.82	0.18
gImdisc w. interactions	0.62	0.95	0.67	0.54

Conclusion and future work

Take-aways

Conclusion

Take-aways

Conclusion

- Interpretability + good empirical results and statistical guarantees (to some extent...),

Take-aways

Conclusion

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- R implementation of gImdisc available on Github, to be submitted to CRAN,

Take-aways

Conclusion

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- R implementation of gImdisc available on Github, to be submitted to CRAN,
- Python implementation of gImdisc available on Github and PyPi,

Take-aways

Conclusion

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- R implementation of gImdisc available on Github, to be submitted to CRAN,
- Python implementation of gImdisc available on Github and PyPi,
- Big gain for statisticians relying on logistic regression.

Take-aways

Conclusion

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- R implementation of glmdisc available on Github, to be submitted to CRAN,
- Python implementation of gImdisc available on Github and PyPi,
- Big gain for statisticians relying on logistic regression.

Perspectives

Tested for logistic regression and polytomous logistic links: can be adapted to other models p_{θ} and p_{α} !

Thanks!

References

E Ramírez-Gallego, S., García, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Alonso-Betanzos, A., Benítez, J. M., and Herrera, F. (2016).
Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(1):5-21.

Interaction discovery：proposal

$$
\begin{aligned}
& p\left(\delta_{k, \ell}=1 \mid e_{k}, e_{\ell, y}\right)=g\left(\operatorname{BIC}\left[\delta_{k, \ell}=1\right]-\operatorname{BIC}\left[\delta_{k, \ell}=0\right]\right) \\
& \approx \exp \left(\frac{1}{2}\left(\operatorname{BIC}\left[p_{\theta}\left(y \mid e_{k}, e_{\ell}, \delta_{k, \ell}=0\right)\right]-\operatorname{BIC}\left[p_{\theta}\left(y \mid e_{k}, e_{\ell}, \delta_{k, \ell}=1\right)\right]\right)\right) \\
& q\left(\delta, \delta^{\prime}\right)=\left|\delta_{k, \ell}-p_{k, \ell}\right| \text { for the unique couple }(k, \ell) \text { s.t. } \delta_{k, \ell}^{(s)} \neq \delta_{k, \ell}^{\prime} \\
& \alpha=\min \left(1, \frac{p\left(\delta^{\prime} \mid e, y\right)}{p(\delta \mid e, y)} \frac{1-q\left(\delta, \delta^{\prime}\right)}{q\left(\delta, \delta^{\prime}\right)}\right) \\
& \approx \min \left(1, \exp \left(\frac{1}{2}\left(\operatorname{BIC}\left[p_{\theta}(y \mid e, \delta)\right]-\operatorname{BIC}\left[p_{\theta}\left(y \mid e, \delta^{\prime}\right)\right]\right)\right) \frac{1-q\left(\delta, \delta^{\prime}\right)}{q\left(\delta, \delta^{\prime}\right)}\right)
\end{aligned}
$$

