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Current practice

Job Home Time in
job

Family status Wages

Score

Repayment

Craftsman Owner 20 Widower 2000

225

0

? Renter 10 Common-law 1700

190

0

Licensed profes-
sional

Starter 5 Divorced 4000

218

1

Executive By work 8 Single 2700

202

1

Office employee Renter 12 Married 1400

205

0

Worker By family 2 ? 1200

192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Job Family status Wages

Score

Repayment

Craftsman Widower ]1500;2000]

225

0

? Common-law ]1500;2000]

190

0

Licensed profes-
sional

Divorced ]2000;∞[

218

1

Executive Single ]2000;∞[

202

1

Office employee Married ]-∞ ; 1500]

205

0

Worker ? ]-∞ ; 1500]

192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Job Family status Wages

Score

Repayment

?+Low-qualified ?+Alone ]1500;2000]

225

0

?+Low-qualified Union ]1500;2000]

190

0

High-qualified ?+Alone ]2000;∞[

218

1

High-qualified ?+Alone ]2000;∞[

202

1

?+Low-qualified Union ]-∞ ; 1500]

205

0

?+Low-qualified ?+Alone ]-∞ ; 1500]

192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Job Family status x Wages

Score

Repayment

?+Low-qualified ?+Alone x ]1500;2000]

225

0

?+Low-qualified Union x ]1500;2000]

190

0

High-qualified ?+Alone x ]2000;∞[

218

1

High-qualified ?+Alone x ]2000;∞[

202

1

?+Low-qualified Union x ]-∞ ; 1500]

205

0

?+Low-qualified ?+Alone x ]-∞ ; 1500]

192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Job Family status x Wages
Score

Repayment

?+Low-qualified ?+Alone x ]1500;2000]
225

0

?+Low-qualified Union x ]1500;2000]
190

0

High-qualified ?+Alone x ]2000;∞[
218

1

High-qualified ?+Alone x ]2000;∞[
202

1

?+Low-qualified Union x ]-∞ ; 1500]
205

0

?+Low-qualified ?+Alone x ]-∞ ; 1500]
192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Feature Level Points

Age
18-25 10
25-45 20
45-+∞ 30

Wages
−∞-1000 15
1000-2000 25
2000-+∞ 35

. . . . . . . . .
Glucose level . . . . . .

Table: Final scorecard.
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Mathematical reinterpretation

The whole process can be decomposed into two steps:

X → E → Y
x 7→ e = f (x) 7→ y

Selected features: x = (xj)
d
1 (continuous or categorical).

f is “component-wise”, i.e. f (x) = (fj(xj))
d
1 .

We restrict to discretization and grouping of factor levels.
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Mathematical reinterpretation: Feature Engineering

xj
fj(xj) = 1 fj(xj) = 2 fj(xj) = 3

Discretization

Into m intervals with associated cutpoints
c = (c0 = −∞, c1, . . . , cm−1, cm = +∞).

Discretization function

fj(·; c ,m) : R→{1, . . . ,m}

x 7→
m∑

k=1

k 1]ck−1;ck ](x)
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Mathematical reinterpretation: Feature Engineering

1 2

1 2 3 4 5

fj(xj) =

xj =

Grouping

Grouping o values into m, m ≤ o.

Grouping function

fj : {1, . . . , o} → {1, . . . ,m}
fj surjective: it defines a partition of {1, . . . , o} in m elements.
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Mathematical reinterpretation: Engineered Feature Space

Discretization

fj ∈Mj = {fj(·; c j ,mj)|mj ∈ N, cj ,1 < . . . < cj ,mj−1}

Mj is seemingly continuous but with a finite sample, a countable
Feature Space can be recovered by remarking:

xj
hj(xj) = 1 hj(xj) = 2

Example (n = 20, d = 10): ≈ 1057 models inMd
j .
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Mathematical reinterpretation: Engineered Feature Space

Grouping

fj ∈Mj = {Partitions from {1, . . . , oj} to {1, . . . ,mj};mj ≤ oj}.

Its cardinality is given by the Stirling number of the second kind:
|Mj | =

∑oj
mj=1

1
mj !

∑mj

i=0(−1)mj−i
(mj

i

)
ioj .

Exhaustive search is untractable.
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Mathematical reinterpretation: Objective

Target feature y ∈ {0, 1} must be predicted given engineered
features f (x) = (fj(xj))

d
1 .

On “raw” data, logistic regression yields:

logit(pθraw(1|x)) = θ0 +
∑
j cont.

θjxj +
∑
j cat.

θ
xj
j

On discretized / grouped data, logistic regression yields:

logit(pθf (1|f (x))) = θ0 +
d∑

j=1

θ
fj (xj )
j
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Mathematical reinterpretation: Objective
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Example

True data

logit(ptrue(1|x)) = ln

(
ptrue(1|x)

1− ptrue(1|x)

)
= sin((x1 − 0.7)× 7)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

lo
gi
t(
p(
1|
x)
)

True distribution

Figure: True relationship between predictor and outcome



13/38

Example

Logistic regression on “raw” data:

logit(pθraw(1|x)) = θ0 + θ1x1

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

lo
gi
t(
p(
1|
x)
)

True distribution
Linear logistic regression

Figure: Linear logistic regression fit
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Example

Logistic regression on discretized data:
If f is not carefully chosen . . .

logit(pθf (1|f (x))) = θ0 + θ
f1(x1)
1︸ ︷︷ ︸

θ11 ,...,θ
50
1

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

lo
gi
t(
p(
1|
x)
)

True distribution
Bad discretization

Figure: Bad (high variance) discretization



13/38

Example

Logistic regression on discretized data:
If f is carefully chosen . . .

logit(pθf (1|f (x))) = θ0 + θ
f1(x1)
1︸ ︷︷ ︸

θ11 ,...,θ
3
1

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

lo
gi
t(
p(
1|
x)
)

True distribution
Good discretization

Figure: Good (bias/variance tradeoff) discretization
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Criterion

θ can be estimated for each discretization f and f ? can be chosen
through our favorite model choice criterion e.g. BIC.

A model selection problem

(f ?,θ?) = argmin
f ∈F ,θ∈Θf

−2
n∑

i=1

ln pθ(yi |f (x i )) + |θ| × ln(n),

where θ is classicaly estimated via MLE.

Compromise between (over-)fitting the data and model complexity
(and explainability in a sense!).

F is discrete and combinatorial: how can we get around this
problem?
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State-of-the art

Current academic methods:

A lot of existing heuristics, see [Ramírez-Gallego et al., 2016]:



16/38

State-of-the art

Quick example of χ2:

Category # samples # cases p-value
18-20 10 5 0.3
20-22 10 6 0.2
22-24 10 4
. . . . . . . . . . . .
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Supervised multivariate discretization and factor
levels grouping
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Mathematical formalization

Discretized / grouped xj denoted by ej has been seen up to now as
the result of a function of xj :

ej = fj(xj).

Discretization / grouping ej can be seen as a latent random
variable for which

p(ej |xj) = 1ej (fj(xj))︸ ︷︷ ︸
Heaviside-like function
difficult to optimize

.

Suppose for now that m = (mj)
d
1 is fixed.

e ∈ Em = {1, . . . ,m1} × . . .× . . .× {1, . . . ,md}.
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First set of hypotheses

H1: implicit hypothesis of every discretization:

Predictive information about y in x is “squeezed” in e, i.e.
ptrue(y |x , e) = ptrue(y |e).

H2: conditional independence:

Conditional independence of ej |xj with other features xk , k 6= j .

x1

xj

xd

e1

ej

ed

y

f1

fj

fd

Figure: Dependance structure between xj ,ej and y



19/38

First set of hypotheses

H1: implicit hypothesis of every discretization:

Predictive information about y in x is “squeezed” in e, i.e.
ptrue(y |x , e) = ptrue(y |e).

H2: conditional independence:

Conditional independence of ej |xj with other features xk , k 6= j .

x1

xj

xd

e1

ej

ed

y

f1

fj

fd

Figure: Dependance structure between xj ,ej and y



19/38

First set of hypotheses

H1: implicit hypothesis of every discretization:

Predictive information about y in x is “squeezed” in e, i.e.
ptrue(y |x , e) = ptrue(y |e).

H2: conditional independence:

Conditional independence of ej |xj with other features xk , k 6= j .

x1

xj

xd

e1

ej

ed

y

f1

fj

fd

Figure: Dependance structure between xj ,ej and y



20/38

Proposal: continuous relaxation

H3: link between xj and ej :

Continuous relaxation of a discrete problem (cf neural nets)

Continuous features: relaxation of the “hard” discretization
Link between ej and xj is supposed to be polytomous logistic:

pαj (ej |xj).

Categorical features: relaxation of the grouping problem

A simple contingency table is used:

pαj (ej = k |xj = `) = αk,`
j .
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Intuitions about how it works: model proposal

p(y |x ,θ,α) =
∑

e∈Em

p(y |x , e)p(e|x)

=
∑

e∈Em

p(y |e)
d∏

j=1

p(ej |xj)

=
∑

e∈Em

pθe (y |e)︸ ︷︷ ︸
logistic

d∏
j=1

pαj (ej |xj)︸ ︷︷ ︸
logistic or table

≈ pθ?(y |e?)

Subsequently, it is equivalent to “optimize” p(y |x ,θ,α).

max
θ,e

pθ(y |e) ' max
θ,α

p(y |x ,θ,α)
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Go back to “hard” thresholding: MAP estimation

f̂j(xj) = argmax
1≤k≤mj

pαj (k|xj)

−0.7 1

f̂1(x1) = 1 f̂1(x1) = 2 f̂1(x1) = 3

x1

p
(1
|x
1)

−0.7 1

f̂1(x1) = 1 f̂1(x1) = 2 f̂1(x1) = 3

x1

p
(2
|x
1)

−0.7 1

f̂1(x1) = 1 f̂1(x1) = 2 f̂1(x1) = 3

x1

p
(3
|x
1)
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Estimation of the proposed model

Two very different estimation strategies

1. In the statistics community: latent feature = EM-like algorithm.

We try to get maxθ,α p(y |x ;θ,α) through SEM algorithm + Gibbs
sampling step that explicity draws e.

2. Machine Learning: neural networks natively learn representations
of the data.

A 1-hidden layer neural network with softmax activation function
that via Stochastic Gradient Descent tries to maximize the
likelihood of pθ(y |ẽ = (pαj (1|xj), . . . , pαj (mj |xj))d1 ).
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Estimation via SEM

“Classical” estimation strategy with latent variables: EM algorithm.

There would still be a sum over Em:
p(y |x ,θ,α) =

∑
e∈Em

pθ(y |e)
∏d

j=1 pαj (ej |xj)

Use a Stochastic-EM! Draw e knowing that:

p(e|x , y) =
pθ(y |e)

∏d
j=1 pαj (ej |xj)∑

e∈Em
pθ(y |e)

∏d
j=1 pαj (ej |xj)︸ ︷︷ ︸

still difficult to calculate

Gibbs-sampling step:

p(ej |x , y , e{−j}) ∝ pθ(y |e)pαj (ej |xj)
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Algorithm

Initialization
x1,1 · · · x1,d

.

.

.
.
.
.

.

.

.
xn,1 · · · xn,d

 at random
⇒


e1,1 · · · e1,d

.

.

.
.
.
.

.

.

.
en,1 · · · en,d


Loop


y1

.

.

.
yn

 logistic
regression
⇒


e1,1 · · · e1,d

.

.

.
.
.
.

.

.

.
en,1 · · · en,d


polytomous
regression
⇒


x1,1 · · · x1,d

.

.

.
.
.
.

.

.

.
xn,1 · · · xn,d


Updating e

p(y1, e1,j = k|x i )

.

.

.
p(yn, en,j = k|x i )


random
sampling
⇒


e1,j

.

.

.
en,j


Calculating eMAP

f̂j (x1,j )

.

.

.
f̂j (xn,j )


MAP

estimate
=


argmaxej

pαj (ej |x1,j )

.

.

.
argmaxej

pαj (ej |xn,j )
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Estimation via neural nets

Continuous input #1

Level #1

Level #2

Level #3

Soft

Soft

Soft

Soft

σ Output

Hidden
layer

Input
layer

Output
layer

Softmax outputs
are pαj (ej |xj).
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In the end: the best discretization

New model selection criterion
We have drastically restricted the search space to provably clever
candidates f̂

(1)
, . . . , f̂

(iter)
resulting either from the Gibbs sampling

or the neural network and MAP estimation.

(f ?,θ?) = argmin
f̂ ∈{f̂ (1)

,...,f̂
(iter)},θ∈Θm

−2
n∑

i=1

ln pθ(yi |f̂ (x i ))

+ (m1 × · · · ×md − d)× ln(n)

We would still need to loop over candidates m!

In practice if ∀i , p(ei ,j = 1|xi ,j , yi )� 1, then ej = 1 disappears. . .

Start with m = (mmax)
d
1 and “wait” . . . eventually until m = 1.
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Selecting interactions in logistic regression
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Notations

Upper triangular matrix with δk,` = 1 if k < ` and features p and q
“interact” in the logistic regression.

logit(pθf (1|f (x))) = θ0 +
d∑

j=1

θ
fj (xj )
j +

∑
1≤k<`≤d

δk,`θ
fk (xk )f`(x`)
k,`

Imagine for now that the discretization f (x) is fixed. The criterion
becomes:

(θ?, δ?) = argmin

θ,δ∈{0,1}
d(d−1)

2

−2
n∑

i=1

ln pθ(yi |f (x i ), δ) + |θ| ln(n)︸ ︷︷ ︸
BIC[δ]

Analogous to previous problem: 2
d(d−1)

2 models.
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Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings algorithm.

Which transition proposal q : ({0, 1}
d(d−1)

2 , {0, 1}
d(d−1)

2 ) 7→ [0; 1]?
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Model proposal

2d(d−1) probabilities to calculate. . .

We restrict changes to only one entry δk,`.

Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

Trick: alternate one discretization / grouping step and one
“interaction” step.
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Results: credit scoring datasets

Performance asserted on simulated data.
Good performance on real data:

Gini Current performance glmdisc Basic glm
Auto (n=50,000 ; d=15) 57.9 64.84 58

Revolving (n=48,000 ; d=9) 58.57 67.15 53.5
Prospects (n=5,000 ; d=25) 35.6 47.18 32.7
Electronics (n=140,000 ; d=8) 57.5 58 -10

Young (n=5,000 ; d=25) ≈ 15 30 12.2
Basel II (n=70,000 ; d=13) 70 71.3 19

Relatively fast computing time: between 2 hours and a day on a
laptop according to number of observations, features, . . .

“Inexisting” human time.
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Results: medicine datasets

Pima Breast Heart Birthwt
Naïve LR 0.73 0.94 0.78 0.34

Naïve LR w. interactions 0.60 0.51 0.47 0.15
glmdisc 0.57 0.93 0.82 0.18

glmdisc w. interactions 0.62 0.95 0.67 0.54
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Conclusion and future work
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Take-aways

Conclusion

I Interpretability + good empirical results and statistical
guarantees (to some extent...),

I R implementation of glmdisc available on Github, to be
submitted to CRAN,

I Python implementation of glmdisc available on Github and
PyPi,

I Big gain for statisticians relying on logistic regression.

Perspectives

Tested for logistic regression and polytomous logistic links: can be
adapted to other models pθ and pα!

https://github.com/adimajo/glmdisc
https://github.com/adimajo/glmdisc_python
https://pypi.org/project/glmdisc/
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Thanks!
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Interaction discovery: proposal

p(δk,` = 1|ek , e`, y) = g(BIC[δk,` = 1]− BIC[δk,` = 0])
≈ exp

( 1
2 (BIC[pθ(y |ek , e`, δk,` = 0)]− BIC[pθ(y |ek , e`, δk,` = 1)])

)
q(δ, δ′) = |δk,` − pk,`| for the unique couple (k , `) s.t. δ(s)

k,` 6= δ′k,`

α = min
(
1, p(δ′|e,y)

p(δ|e,y)
1−q(δ,δ′)
q(δ,δ′)

)
≈ min

(
1, exp

( 1
2 (BIC[pθ(y |e, δ)]− BIC[pθ(y |e, δ′)])

) 1−q(δ,δ′)
q(δ,δ′)

)
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