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Context and notations: industrial setting

Job Home Time in
job

Family status Wages Repayment

Craftsman Owner 20 Widower 2000 1
? Renter 10 Common-law 1700 0
Engineer Starter 5 Divorced 4000 1
Executive By work 8 Married 2700 0
Office employee Renter 12 Married 1400 NA
Worker By family 2 ? 1200 NA

Table: Dataset with outliers and missing values.

1. Discarding not financed applicants
2. Feature selection
3. Discretization / grouping
4. Interaction screening
5. Segmentation
6. Logistic regression fitting
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Context and notations: industrial setting
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Context and notations: industrial setting

Job Family status x Wages Score Repayment
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Context and notations: available data

Random variables: X ,Y ,Z .

Observations

x = (x1, . . . , xd) characteristics,
xj ∈ R or {1, . . . , lj} e.g. rent amount, job, . . . ,
y ∈ {0, 1} good or bad,
z ∈ {f, nf} financed or not financed.

Samples

Tf = (xf, yf, zf) n-sample of financed clients,
Tnf = (xnf, znf) n′-sample of not-financed clients,
T = Tf ∪ Tnf observed sample,
Tc = T ∪ ynf complete sample.
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Context and notations: available data

The observed data are the following:

T =

Tf =

(
xf

∪

Tnf =

(
xnf

x1,1 · · · x1,d
...

...
...

xn,1 · · · xn,d
xn+1,1 · · · xn+1,d
...

...
...

xn+n′,1 · · · xn+n′,d

yf

ynf

y1
...
yn
NA
...

NA

zf

znf

f
...
f
nf
...
nf

)
.

)
.

Credit Scoring aims at estimating p(y |x) in the form of a simple
parametric model pθ(y |x) such as logistic regression:

ln
pθ(1|x)

1− pθ(1|x)
= (1, x)′θ.
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Reject Inference: industrial setting

Figure: Simplified financing
mechanism at Crédit Agricole
Consumer Finance

Figure: Proportion of “final” lending
decisions for CACF France
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Reject Inference: industrial setting

The industry traditionally fits a logistic regression︸ ︷︷ ︸
modelling constraint

using only

financed clients︸ ︷︷ ︸
convenience and lack
of better procedure

(fixed parameter space Θ):

θ̂f = argmax
θ

`(θ; Tf) =
n∑

i=1

ln pθ(yi |x i ),

which asymptotically approximates:

θ?f = argmin
θ

EX [KL(p||pθ)|Z = f].
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Reject Inference: industrial setting

Oracle to be approximated:

θ? = argmin
θ

EX [KL(p||pθ)]

= argmax
θ

Ex ,y∼p[ln pθ(y |x)],

which standard estimator would be:

θ̂ = argmax
θ

`(θ; Tc),

but we lack ynf.

Mode
l sp

ace
Θ

θ?f

θ?

θ̂

θ̂ fEst
ima

tion

bias
+va

rian
ce

Est
ima

tion

bias
+va

rian
ce

p(y |x)

Model bias
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Reject Inference: Asymptotics

Estimators :
1. “Oracle”:

√
n + n′(θ̂ − θopt)

L−−−−−→
n,n′→∞

Nd+1(0,Σθopt)

2. Current methodology:
√
n(θ̂f − θfopt)

L−−−→
n→∞

Nd+1(0,Σf
θfopt

)

What follows will only hold for “local” model which output depends
asymptotically only on p(y |x), such as logistic regression1.

It can be shown that Bayesian classifiers, SVMs, decision trees are
“global” learners 1.

1Zadrozny, “Learning and evaluating classifiers under sample selection bias”.
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Reject Inference: modelling the financing mechanism

Due to the financing mechanism, labels y are not MCAR.

Let {pφ(z |x , y)}φ∈Φ denote this hidden financing
mechanism (as a parametrized family).

Combining financing and credit-worthiness probability distributions:

pγ(y , z |x) = pθ(γ)(y |x)︸ ︷︷ ︸
GCA

pφ(γ)(z |x , y)︸ ︷︷ ︸
?

.

To estimate γ, we could rely on Maximum Likelihood theory:

`(γ; T ) =
n∑

i=1

ln pγ(yi , f|x i ) +
n+n′∑
i=n+1

ln
∑

y∈{0,1}

pγ(y , nf|x i ).
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Reject Inference: flawed model selection

No free lunch: financial or statistical investment to make.
Because no test-sample T test is available from p(x , y)︸ ︷︷ ︸

(((
((((funding bad clients

��
��at a loss

,
we cannot resort to error-rate criteria:

Error(T test) =
1

|T test|
∑

i∈T test

I(ŷi 6= yi ).

We should use information criteria on the observed data T such as:

BIC(γ̂; T ) = −2`(γ̂; T ) + dim(Γ) ln n,

where γ̂ = argmaxγ `(γ; T ), to compare models.

It requires to precisely state the models {pγ(y , z |x)}Γ that
compete and their underlying assumptions.
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I(ŷi 6= yi ).

We should use information criteria on the observed data T such as:

BIC(γ̂; T ) = −2`(γ̂; T ) + dim(Γ) ln n,

where γ̂ = argmaxγ `(γ; T ), to compare models.

It requires to precisely state the models {pγ(y , z |x)}Γ that
compete and their underlying assumptions.



14/56

Reject Inference: flawed model selection

No free lunch: financial or statistical investment to make.
Because no test-sample T test is available from p(x , y)︸ ︷︷ ︸

(((
((((funding bad clients

��
��at a loss

,
we cannot resort to error-rate criteria:

Error(T test) =
1

|T test|
∑

i∈T test
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Reject Inference: strategies

We gathered 6 so-called Reject Inference methods from the
literature that aim at re-injecting xnf into the estimation procedure
of θ.

They usually resemble EM-like algorithms:

T (1)
c =

(( x1,1 · · · x1,d
...

...
...

xn,1 · · · xn,d
xn+1,1 · · · xn+1,d

...
...

...
xn+n′,1 · · · xn+n′,d

)
,

( y1
...
yn

ŷ
(1)
n+1
...

ŷ
(1)
n+n′

)
,

( f
...
f
nf
...
nf

))
Can we reinterpret these empirical methods in the missing data and
information criterion frameworks and / or expose their implicit
modelling steps?
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Reject Inference: example of Fuzzy Augmentation2

Estimate θ̂f = argmaxθ `(θ; Tf), infer for n + 1 ≤ i ≤ n + n′:

ŷi = pθ̂f(1|x i ),

and re-estimate θ using the resulting Tc. For 1 ≤ j ≤ d :

∂
∑n′+n

i=n+1
∑1

yi=0 pθ̂f(yi |x i ) ln(pθ(yi |x i ))

∂θj
= 0⇔ θ = θ̂f,

such that:

argmax
θ∈Θ

n′+n∑
i=n+1

1∑
yi=0

pθ̂f(yi |x i ) ln(pθ(yi |x i )) = θ̂f.

Finally:
argmax

θ∈Θ
`(θ; Tc) = argmax

θ∈Θ
`(θ; Tf) = θ̂f.

2Nguyen, Reject inference in application scorecards.
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Reject Inference: missingness mechanism

I MAR3: ∀ x , y , z , p(z |x , y) = p(z |x)
→ Financing is determined by an old score: Z = 1{(1,x)′θ>cut}.

I MNAR3: ∃ x , y , z , p(z |x , y) 6= p(z |x)
→ Operators’ hidden “feeling” X̃ influence the financing.
→ Expert rules based on both present and hidden features X
and X̃ resp. where X̃ cannot be totally explained by X .
→ Cannot be tested4.

Y

X

X̃

Z

3Little and Rubin, Statistical analysis with missing data.
4Molenberghs et al., “Every missingness not at random model has a

missingness at random counterpart with equal fit”.
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3Little and Rubin, Statistical analysis with missing data.
4Molenberghs et al., “Every missingness not at random model has a

missingness at random counterpart with equal fit”.
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Reject Inference: research contribution

Fuzzy Augmentation and Twins produce the same coefficient θ̂f.

Reclassification5,6,7 is equivalent to a Classification-EM algorithm,
thus introducing a bias in the estimation of θ.

MAR MNAR
Well-specified
model θ̂f is unbiased. θ̂f is biased.

Any correction relies
on a priori unverifiable
assumptions about
pφ(z |x , y), e.g. the

Parcelling5,6,7 method.
Misspecified
model

θ̂f is biased:
Augmentation2,5,6,7 could
be suitable but introduces a
new estimation procedure8

(which requires ∀x , p(f|x) > 0).
5Guizani et al., “Une Comparaison de quatre Techniques d’Inférence des

Refusés dans le Processus d’Octroi de Crédit”.
6Soulié and Viennet, “Le Traitement des Refusés dans le Risque Crédit”.
7Banasik and Crook, “Reject inference, augmentation, and sample

selection”.
8Zadrozny, “Learning and evaluating classifiers under sample selection bias”.
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Reject Inference: augmentation

For “local” misspecified models and “global” models:

Ex ,y [ln[pθ(y |x)]] =
1∑

y=0

∫
X

ln pθ(y |x)p(y |x)p(x)dx

=
1∑

y=0

∫
X
p(f) ln pθ(y |x)

p(x |f)
p(f|x)

p(y |x)dx

=
1∑

y=0

∫
X
p(f)

ln pθ(y |x)

p(f|x)
p(x , y |f)dx

≈ 1
n

∑
i∈Tf

p(f)
p(f|x i )

ln pθ(yi |x i ).

This assumes p(f |x) > 0 ∀x , which is wrong.

Further, one needs to specify / model p(f |x).
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Reject Inference: industry contribution
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Feature quantization
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Feature quantization: by an example

For theoretical reasons: bias-variance tradeoff.
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Feature quantization: some more notations I

For practical reasons: interpretability, outliers...
... at the expense of the statistician’s time.

Quantized data
q(x) = (q1(x1), . . . ,qd(xd))

q j(xj) = (qj ,h(xj))
mj

1 (one-hot encoding)

qj ,h(·) = 1(xj ∈ Cj ,h), 1 ≤ h ≤ mj



24/56

Feature quantization: some more notations II

Quantization is model selection (illustrated here with BIC).

Oracle
θ?,q? = argmax

θ∈Θq ,q∈Q
Ex ,y [ln pθ(y |q(x))] ,

θ̂BIC, q̂BIC = argmin
θ∈Θq ,q∈Q

BIC(θ̂q ; yf,q(xf)),

where θ̂q = argmax
θ∈Θq

`(θ; yf,q(xf)).

Implicitly assumes quantizations are “well” separated.

Quantization becomes an algorithmic problem.
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Feature quantization: existing approaches

These approaches9 maximize an “intermediary” criterion, e.g.:

q̂χ
2

j = argmax
q j

χ2(q j(xf), yf)
?
≈ q?j ,

and we hope that it’s aligned with our original goal s.t.:
θ̂χ

2
= argmax

θ
`(θ; yf, q̂χ

2
(xf))

?
≈ θ?.

9Ramirez-Gallego et al., “Data Discretization: Taxonomy and Big Data
Challenge”.
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Feature quantization: MAP estimation

q̂j ,h(xj) = 1 if h = argmax
1≤h′≤mj

qα̂j,h′ , 0 otherwise10,11.

q̂j ,1(xj) = 1 q̂j ,1(xj) = 0 q̂j ,1(xj) = 0

ĉj ,1 ĉj ,2xj

q
α̂

j,
1
(x

j)

q̂j ,2(xj) = 0 q̂j ,2(xj) = 1 q̂j ,2(xj) = 0

ĉj ,1 ĉj ,2xj

q
α̂

j,
2
(x

j)

q̂j ,3(xj) = 0 q̂j ,3(xj) = 0 q̂j ,3(xj) = 1

ĉj ,1 ĉj ,2xj

q
α̂

j,
3
(x

j)

10Chamroukhi et al., “A regression model with a hidden logistic process for
feature extraction from time series”.

11Samé et al., “Model-based clustering and segmentation of time series with
changes in regime”.

11Chamroukhi et al., “A regression model with a hidden logistic process for
feature extraction from time series”.

11Samé et al., “Model-based clustering and segmentation of time series with
changes in regime”.

11Chamroukhi et al., “A regression model with a hidden logistic process for
feature extraction from time series”.

11Samé et al., “Model-based clustering and segmentation of time series with
changes in regime”.

11Chamroukhi et al., “A regression model with a hidden logistic process for
feature extraction from time series”.

11Samé et al., “Model-based clustering and segmentation of time series with
changes in regime”.



27/56

Feature quantization: neural networks

Very simple neural network.
Very fast implementations available, e.g. TensorFlow.
No guarantee of global optimum (but works well in practice).

Continuous input #1

Level #1

Level #2

Level #3

Soft

Soft

Soft

Soft

σ Output

Hidden
layer

Input
layer

Output
layer

Softmax outputs
are qαj

(xj).

Multivariate quantization!
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Feature quantization: neural networks
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Feature quantization: results

Simulated data

Table: For different sample sizes n, (A) CI of ĉj,2 for cj,2 = 2/3. (B) CI
of m̂ for m1 = 3. (C) CI of m̂3 for m3 = 1.

n (A) ĉj ,2 (B) m̂1 (C) m̂3

1,000 [0.656, 0.666]
1

90

9

60

32

8

10,000 [0.666, 0.666]
0

100

0

88

12

0



30/56

Feature quantization: results

CACF data

Table: Gini indices (the greater the value, the better the performance) of
our proposed quantization algorithm glmdisc, the two baselines and the
current scorecard.

Portfolio ALLR
Current

performance
ad hoc
methods

Our proposal:
glmdisc-NN

Our proposal:
glmdisc-SEM

glmdisc-SEM
w. interactions

Automobile 59.3 (3.1) 55.6 (3.4) 59.3 (3.0) 58.9 (2.6) 57.8 (2.9) 64.8 (2.0)
Renovation 52.3 (5.5) 50.9 (5.6) 54.0 (5.1) 56.7 (4.8) 55.5 (5.2) 55.5 (5.2)
Standard 39.7 (3.3) 37.1 (3.8) 45.3 (3.1) 43.8 (3.2) 36.7 (3.7) 47.2 (2.8)
Revolving 62.7 (2.8) 58.5 (3.2) 63.2 (2.8) 62.3 (2.8) 60.7 (2.8) 67.2 (2.5)
Mass retail 52.8 (5.3) 48.7 (6.0) 61.4 (4.7) 61.8 (4.6) 61.0 (4.7) 60.3 (4.8)
Electronics 52.9 (11.9) 55.8 (10.8) 56.3 (10.2) 72.6 (7.4) 62.0 (9.5) 63.7 (9.0)
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Segmentation: logistic regression trees
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Segmentation: logistic regression trees

Clients
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Figure: Scorecards tree structure in acceptance system.
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Segmentation: logistic regression trees

Current procedure(s):

I Promise a new partner their own score to maximize
acceptance;

I Merge existing “close” branches that show similar performance;

I Try basic “clustering” techniques, e.g. visual separation
of the data and / or levels on the two first MCA axes.

Problem(s):

I This structure is not the result of optimization and is probably
suboptimal (by how much?);

I There are situations in which it severely fails.
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Segmentation: logistic regression trees
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Segmentation: logistic regression trees
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Segmentation: logistic regression trees: contribution

Similarly to the quantization proposal: ability to be in several
segments at a time.

p(y |x) =
K∑

c=1

pθ(y |x ; c)︸ ︷︷ ︸
“optimized” GCA

constraint

pβ(c |x)︸ ︷︷ ︸
“unoptimized” relaxed

CACF constraint

,

where pβ(c |x) is given by the classification tree as the proportion
of training samples in each leaf (not majority vote).

c
(s)
i ∼ pθ·(s−1)(yi |x i ; ·)pβ(s−1)(·|x i ).

θc(s) = argmax
θc

n∑
i=1

1c(c
(s)
i ) ln pθc (yi |x i ; ci ).

β(s) = C4.5(c(s), x).
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Segmentation: logistic regression trees: some results
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Segmentation: logistic regression trees: some results
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Segmentation: logistic regression trees: some results
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Segmentation: logistic regression trees: some results

Logistic Decision SEM Gradient Random
regression Tree Boosting Forest

AUC (± vs current method) -3,02 -2,66 -1,78 -0,17 +0,36

SEM LMT MOB
# segment (current: 9) 2 11 1

AUC (± vs current method) -1,52 -7,70 -5,21
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Missing data imputation
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Missing data imputation: some results I

Research internship: comparing missing data imputation methods,
mostly in MAR situations.
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Missing data imputation: some results II
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Missing data imputation: some results III
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Missing data imputation: some results IV
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Missing data imputation: some results V
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Carbon risk
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Carbon risk: some results

Research internship: use carbon price scenarios to impact the
earnings of big corporations and adjust their default probability
accordingly.
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NLP for extra-financial reports
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NLP for extra-financial reports: some results I

Research internship: build joint NER and RE models to
automatically read through extra-financial reports.

LocationCoal Activity

HasActivity IsRelatedTo

Date

Recognizes

Social Official 
Texts

Makes

Of

Commitment level

Environmental 
Issues

Organisation

Social 
Issues 

ESG ISSUES 
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NLP for extra-financial reports: some results II
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Conclusion and future work
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Conclusions from my PhD

This PhD tackled three main issues of “traditional” Credit Scoring:
1. Reject inference: impact of tossing away not-financed clients,

2. “Constrained” representation learning: discretization, grouping,
interaction screening,

3. Predictive segmentation: logistic regression trees,
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Conclusion: sound problem reformulation, no method
recommended, scoringTools R package.
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interaction screening,
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Conclusions from my PhD

This PhD tackled three main issues of “traditional” Credit Scoring:
1. Reject inference: impact of tossing away not-financed clients,

2. “Constrained” representation learning: discretization, grouping,
interaction screening,

3. Predictive segmentation: logistic regression trees,

Conclusion: first experiments on simulated and real data are
encouraging, glmtree R package.
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Future work as presented for my PhD - might be helpful?

There remains a lot of open questions:
1. Credit Scoring for profit: swap “p(2 unpaid instalments)” for

p(profit> 0) or E[profit],

2. Representation learning for fine-grained unstructured data,
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Perspective: experiment observation-wise misclassification
costs.
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Future work as presented for my PhD - might be helpful?

There remains a lot of open questions:
1. Credit Scoring for profit: swap “p(2 unpaid instalments)” for

p(profit> 0) or E[profit],

2. Representation learning for fine-grained unstructured data,

Perspective: provide statistically sound methods to aggregate
“behavioural” data, e.g. web visitation patterns.
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Thanks!
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Quantization: research contribution

“Soft” approximation:

qαj
(·) =

(
qαj,h

(·)
)mj

h=1 with

{∑mj

h=1 qαj,h
(·) = 1,

0 ≤ qαj,h
(·) ≤ 1,

For continuous features, we set for αj ,h = (α0j ,h, α
1
j ,h) ∈ R2

qαj,h
(·) =

exp(α0j ,h + α1j ,h·)∑mj

g=1 exp(α0j ,g + α1j ,g ·)
.

For categorical features, we set for
αj ,h = (αj ,h(1), . . . , αj ,h(lj)) ∈ Rlj

qαj,h
(·) =

exp (αj ,h(·))∑mj

g=1 exp (αj ,g (·))
.
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Quantization: research contribution

We wish to maximize the following likelihood:

(θ̂, α̂) = argmax
θ,α

`(θ,α; xf, yf) = argmax
θ,α

n∑
i=1

ln pθ(yi |qα(x i )).

“α? = limn→∞ α̂” should be such that qα? = q?.

Problem: α̂ has to diverge, the MLE is at the border of the
parameter space which could hinder its properties.

Anyway, or more generally if there is no true quantization q?,
q̂ is used instead as a quantization candidate.

Problem: `(θ,α; xf, yf) cannot be directly maximized.

Solution: Resort to (stochastic) gradient descent which each step
(s) will yield α̂(s) and quantization candidate q̂(s).
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Quantization: model = quantization selection

Quantization provider to original selection criterion

We have drastically restricted the search space to iter well-chosen
candidates resulting from the the gradient descent steps.

s? = argmin
s=1,...,iter

BIC(θ̂q̂(s))

We would still need to loop over candidates m!

In practice if ∀i , qαj,h
(xj)� 1, then level h disappears while

performing the argmax.

Start with m = (mmax)d1 and “wait” . . .
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Bivariate interactions
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Bivariate interactions: notations

Upper triangular matrix with δk,` = 1 if k < ` and features k and `
“interact” in the logistic regression.

logit(pθ(1|q(x))) = θ0 +
d∑

j=1

θ
q j (xj )

j +
∑

1≤k<`≤d
δk,`θ

qk (xk )q`(x`)
k,` .

Imagine for now that the discretization q(x) is fixed. The criterion
becomes:

(θ?, δ?) = argmin

θ,δ∈{0,1}
d(d−1)

2

BIC(θ̂δ; Tf).

Analogous to previous problem: 2
d(d−1)

2 models.
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Bivariate interactions: model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm.
Idea: propose well-chosen interactions and accept / reject them
based on the BIC criterion of the resulting logistic regression.

p(y |q) =
∑

δ∈{0,1}
d(d−1)

2

p(y |q, δ)p(δ)

p(δ|q, y) ∝ exp(−BIC[δ]/2)��
�p(δ) p(δp,q) =

1
2

Which transition proposal T : ({0, 1}
d(d−1)

2 , {0, 1}
d(d−1)

2 ) 7→ [0; 1]?
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Bivariate interactions: model proposal

2d(d−1) probabilities to calculate. . .

We restrict changes to only one entry δk,`.

Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

If the interaction between two features is meaningful when only
these two features are considered, there is a good chance that it
will be in the full multivariate model.

Trick: alternate one discretization / grouping step and one
“interaction” step.



8/13

Bivariate interactions: model proposal

2d(d−1) probabilities to calculate. . .

We restrict changes to only one entry δk,`.

Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

If the interaction between two features is meaningful when only
these two features are considered, there is a good chance that it
will be in the full multivariate model.

Trick: alternate one discretization / grouping step and one
“interaction” step.



8/13

Bivariate interactions: model proposal

2d(d−1) probabilities to calculate. . .

We restrict changes to only one entry δk,`.

Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

If the interaction between two features is meaningful when only
these two features are considered, there is a good chance that it
will be in the full multivariate model.

Trick: alternate one discretization / grouping step and one
“interaction” step.



8/13

Bivariate interactions: model proposal

2d(d−1) probabilities to calculate. . .

We restrict changes to only one entry δk,`.

Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

If the interaction between two features is meaningful when only
these two features are considered, there is a good chance that it
will be in the full multivariate model.

Trick: alternate one discretization / grouping step and one
“interaction” step.



8/13

Bivariate interactions: model proposal

2d(d−1) probabilities to calculate. . .

We restrict changes to only one entry δk,`.

Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

If the interaction between two features is meaningful when only
these two features are considered, there is a good chance that it
will be in the full multivariate model.

Trick: alternate one discretization / grouping step and one
“interaction” step.



9/13

SEM-Gibbs quantization
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SEM-Gibbs quantization

Originally (and as implemented in the R package glmdisc), the
optimization was a bit different:

I q is considered a latent (unobserved) feature q;
I A classical EM algorithm is intractable since it requires an

Expectation step over all possible quantizations;
I Solution: random draw ≈ Bayesian statistics.
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SEM-Gibbs quantization: estimation

“Classical” estimation strategy with latent variables: EM algorithm.

There would still be a sum over Qm:
p(y |x ,θ,α) =

∑
q∈Qm

pθ(y |q)
∏d

j=1 pαj (qj |xj)

Use a Stochastic-EM! Draw q knowing that:

p(q|x , y) =
pθ(y |q)

∏d
j=1 pαj (qj |xj)∑

q∈Qm
pθ(y |q)

∏d
j=1 pαj (qj |xj)︸ ︷︷ ︸

still difficult to calculate

Gibbs-sampling step:

p(qj |x , y ,q{−j}) ∝ pθ(y |q)pαj (qj |xj)
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SEM-Gibbs quantization: algorithm

Initialization
x1,1 · · · x1,d

.

.

.
.
.
.

.

.

.
xn,1 · · · xn,d

 at random
⇒


q1,1 · · · q1,d

.

.

.
.
.
.

.

.

.
qn,1 · · · qn,d


Loop


y1

.

.

.
yn

 logistic
regression
⇒


q1,1 · · · q1,d

.

.

.
.
.
.

.

.

.
qn,1 · · · qn,d


polytomous
regression
⇒


x1,1 · · · x1,d

.

.

.
.
.
.

.

.

.
xn,1 · · · xn,d


Updating q

p(y1, q1,j = k|x i )

.

.

.
p(yn, qn,j = k|x i )


random
sampling
⇒


q1,j

.

.

.
qn,j


Calculating qMAP


qMAP,1,j

.

.

.
qMAP,n,j


MAP

estimate
=


argmaxqj

pαj (qj |x1,j )

.

.

.
argmaxqj

pαj (qj |xn,j )


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SEM-Gibbs quantization: simulations
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