Reject Inference, "quantization", interactions, logistic regression trees, and bonuses

Adrien Ehrhardt

Mission Lane, 08/03/2022

 \approx 2016-2019: "CIFRE" PhD student at Inria (consortium of French labs, like CNRS, but specialized in Applied Maths) and Crédit Agricole Consumer Finance (consumer loans).

Who am I?

 \approx 2016-2019: "CIFRE" PhD student at Inria (consortium of French labs, like CNRS, but specialized in Applied Maths) and Crédit Agricole Consumer Finance (consumer loans).

Who am I?

 \approx 2016-2019: "CIFRE" PhD student at Inria (consortium of French labs, like CNRS, but specialized in Applied Maths) and Crédit Agricole Consumer Finance (consumer loans).

 \approx 2016-2019: "CIFRE" PhD student at Inria (consortium of French labs, like CNRS, but specialized in Applied Maths) and Crédit Agricole Consumer Finance (consumer loans).

 \approx 2020-now: Machine Learning Engineer at Crédit Agricole S.A. & Associate Professor at École Polytechnique.

Collaborators

Christophe Biernacki

Vincent Vandewalle

Elise Bayraktar

Xuwen Liu

Minh Tuan Nguyen

Cléa Laouar

Job	Home	Time in job	Family status	Wages	Repayment
Craftsman	Owner	20	Widower	2000	1
?	Renter	10	Common-law	1700	0
Engineer	Starter	5	Divorced	4000	1
Executive	By work	8	Married	2700	0
Office employee	Renter	12	Married	1400	NA
Worker	By family	2	?	1200	NA

Job	Home	Time in job	Family status	Wages	Repayment
Craftsman	Owner	20	Widower	2000	1
?	Renter	10	Common-law	1700	0
Engineer	Starter	5	Divorced	4000	1
Executive	By work	8	Married	2700	0
Office employee	Renter	12	Married	1400	NA
Worker	By family	2	?	1200	NA

- 1. Discarding not financed applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job	Home	Time in job	Family status	Wages	Repayment
Craftsman	Owner	20	Widower	2000	1
?	Renter	10	Common-law	1700	0
Engineer	Starter	5	Divorced	4000	1
Executive	By work	8	Married	2700	0
Office employee	Renter	<u>)1</u> 2	Married	1400	NA
Wørker	By_family	2	1	1200	NA

- 1. Discarding not financed applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status	Wages	Repayment
Craftsman			Widower	2000	1
?			Common-law	1700	0
Engineer			Divorced	4000	1
Executive			Married	2700	0
Office employee	Renter	12	Married	1400	NA
Worker	By_family	2	1	1200	NA

- 1. Discarding not financed applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status	Wages	Repayment
Craftsman			Widower]1500;2000]	1
?			Common-law]1500;2000]	0
Engineer			Divorced]2000;∞[1
Executive			Married]2000;∞[0
Office employee	Benter	12	Married	1400	NA
Worker	By_family	2	1	1200	NA

- 1. Discarding not financed applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status	Wages	Repayment
?+Low-qualified			?+Alone]1500;2000]	1
?+Low-qualified			Union]1500;2000]	0
High-qualified			?+Alone]2000;∞[1
High-qualified			Union]2000;∞[0
Office employee	Benter	12	Married	1400	NA
Worker	By_family	2	1	1200	NA

- 1. Discarding not financed applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status x Wages		Repayment
?+Low-qualified			?+Alone ×]1500;2000]		1
?+Low-qualified			Union x]1500;2000]		0
High-qualified			?+Alone x]2000;∞[1
High-qualified			Union x]2000;∞[0
Office employee	Renter	12	Married 1400		NA
Worker	By_family	2	1200		NA

- 1. Discarding not financed applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status × Wages	Repayment
?+Low-qualified			?+Alone ×]1500;2000]	1
?+Low-qualified			Union ×]1500;2000]	0
High-qualified			?+Alone ×]2000;∞[1
High-qualified			Union x]2000;∞[0
Office employee	Benter	J2	Married 1400	NA
Worker	By_family	\$	7 1200	NA

- 1. Discarding not financed applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status × Wages	Score	Repayment
?+Low-qualified			?+Alone ×]1500;2000]	225	1
?+Low-qualified			Union ×]1500;2000]	190	0
High-qualified			?+Alone ×]2000;∞[218	1
High-qualified			Union ×]2000; ∞ [202	0
Office employee	Benter	J2	Married 1400	NA	NA
Worker	By_family	2	1/ 1200	NA	NA

- 1. Discarding not financed applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Random variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$.

Random variables: X, Y, Z.

Observations

 $\begin{array}{ll} {\pmb x} = (x_1, \ldots, x_d) & \text{characteristics,} \\ x_j \in \mathbb{R} \text{ or } \{1, \ldots, l_j\} & e.g. \text{ rent amount, job, } \ldots, \\ y \in \{0, 1\} & \text{good or bad,} \\ z \in \{f, nf\} & \text{financed or not financed.} \end{array}$

Random variables: X, Y, Z.

Observations

$$\begin{split} & \boldsymbol{x} = (x_1, \dots, x_d) & \text{characteristics,} \\ & x_j \in \mathbb{R} \text{ or } \{1, \dots, l_j\} & e.g. \text{ rent amount, job, } \dots, \\ & y \in \{0, 1\} & \text{good or bad,} \\ & z \in \{f, nf\} & \text{financed or not financed.} \end{split}$$

Samples

$$\begin{split} \mathcal{T}_{f} &= (\mathsf{x}_{f},\mathsf{y}_{f},\mathsf{z}_{f}) \quad \textit{n-sample of financed clients,} \\ \mathcal{T}_{nf} &= (\mathsf{x}_{nf},\mathsf{z}_{nf}) \quad \textit{n'-sample of not-financed clients,} \\ \mathcal{T} &= \mathcal{T}_{f} \cup \mathcal{T}_{nf} \quad \text{observed sample,} \\ \mathcal{T}_{c} &= \mathcal{T} \cup \mathsf{y}_{nf} \quad \text{complete sample.} \end{split}$$

The observed data are the following:

The observed data are the following:

Credit Scoring aims at estimating p(y|x) in the form of a simple parametric model $p_{\theta}(y|x)$ such as logistic regression:

The observed data are the following:

Credit Scoring aims at estimating p(y|x) in the form of a simple parametric model $p_{\theta}(y|x)$ such as logistic regression:

$$\ln rac{p_{m{ heta}}(1|m{x})}{1-p_{m{ heta}}(1|m{x})} = (1,m{x})'m{ heta}.$$

Reject Inference

Feature quantization

Segmentation: logistic regression trees

Missing data imputation

Carbon risk

NLP for extra-financial reports

Conclusion and future work

Reject Inference

Reject Inference: industrial setting

% Effectifs

mechanism at Crédit Agricole Consumer Finance

Figure: Proportion of "final" lending decisions for CACE France

The industry traditionally fits a Logistic regression using only modelling constraint financed clients (fixed parameter space Θ): convenience and lack of better procedure $\hat{\theta}_{f} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{T}_{f}) = \sum_{i=1}^{n} \ln p_{\theta}(y_{i} | \mathbf{x}_{i}),$ which asymptotically approximates:

$$oldsymbol{ heta}_{\mathsf{f}}^{\star} = \mathop{\mathrm{argmin}}_{oldsymbol{ heta}} \mathbb{E}_{oldsymbol{X}}[\mathsf{KL}(p||p_{oldsymbol{ heta}})|Z = \mathsf{f}].$$

Reject Inference: industrial setting

Oracle to be approximated:

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta}- heta_{opt}) \xrightarrow[n,n'\to\infty]{\mathcal{L}} \mathcal{N}_{d+1}(0,\Sigma_{ heta_{opt}})$$

2. Current methodology: $\sqrt{n}(\hat{\theta}^{f} - \theta_{opt}^{f}) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{opt}^{f}}^{f})$

¹Zadrozny, "Learning and evaluating classifiers under sample selection bias". 12/56

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta}- heta_{\mathrm{opt}}) \xrightarrow[n,n'\to\infty]{\mathcal{L}} \mathcal{N}_{d+1}(0,\Sigma_{ heta_{\mathrm{opt}}})$$

2. Current methodology: $\sqrt{n}(\hat{\theta}^{f} - \theta_{opt}^{f}) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{opt}^{f}}^{f})$

¹Zadrozny, "Learning and evaluating classifiers under sample selection bias". 12/56

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta} - \theta_{opt}) \xrightarrow[n,n' \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{opt}})$$

2. Current methodology: $\sqrt{n}(\hat{\theta}^{f} - \theta_{opt}^{f}) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{opt}^{f}}^{f})$

¹Zadrozny, "Learning and evaluating classifiers under sample selection bias". 12/56

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta}-\theta_{opt}) \xrightarrow[n,n'\to\infty]{\mathcal{L}} \mathcal{N}_{d+1}(0,\Sigma_{\theta_{opt}})$$

2. Current methodology: $\sqrt{n}(\hat{\theta}^{f}-\theta_{opt}^{f}) \xrightarrow[n,r\to\infty]{\mathcal{L}} \mathcal{N}_{d+1}(0,\Sigma_{\theta}^{f})$

What follows will only hold for "local" model which output depends asymptotically only on p(y|x), such as logistic regression¹.

¹Zadrozny, "Learning and evaluating classifiers under sample selection bias". 12/56

1. "Oracle": $\sqrt{n + n'}(\hat{\theta} - \theta_{opt}) \xrightarrow[n,n' \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta_{opt}})$ 2. Current methodology: $\sqrt{n}(\hat{\theta}^{f} - \theta_{opt}^{f}) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta^{f}}^{f})$

What follows will only hold for "local" model which output depends asymptotically only on p(y|x), such as logistic regression¹.

It can be shown that Bayesian classifiers, SVMs, decision trees are "global" learners $^{1}\!\!.$

¹Zadrozny, "Learning and evaluating classifiers under sample selection bias". 12/50

Due to the financing mechanism, labels y are not MCAR. Let $\{p_{\phi}(z|\mathbf{x}, y)\}_{\phi \in \Phi}$ denote this hidden financing mechanism (as a parametrized family).

Due to the financing mechanism, labels y are not MCAR. Let $\{p_{\phi}(z|\mathbf{x}, y)\}_{\phi \in \Phi}$ denote this hidden financing mechanism (as a parametrized family).

Combining financing and credit-worthiness probability distributions:

$$p_{\gamma}(y, z | \mathbf{x}) = \underbrace{p_{\theta(\gamma)}(y | \mathbf{x})}_{\text{GCA}} \underbrace{p_{\phi(\gamma)}(z | \mathbf{x}, y)}_?.$$

Due to the financing mechanism, labels y are not MCAR. Let $\{p_{\phi}(z|\mathbf{x}, y)\}_{\phi \in \Phi}$ denote this hidden financing mechanism (as a parametrized family).

Combining financing and credit-worthiness probability distributions:

$$p_{\gamma}(y, z | \mathbf{x}) = \underbrace{p_{\theta(\gamma)}(y | \mathbf{x})}_{\text{GCA}} \underbrace{p_{\phi(\gamma)}(z | \mathbf{x}, y)}_?.$$

To estimate γ , we could rely on Maximum Likelihood theory:

Due to the financing mechanism, labels y are not MCAR. Let $\{p_{\phi}(z|\mathbf{x}, y)\}_{\phi \in \Phi}$ denote this hidden financing mechanism (as a parametrized family).

Combining financing and credit-worthiness probability distributions:

$$p_{\gamma}(y, z | \mathbf{x}) = \underbrace{p_{\theta(\gamma)}(y | \mathbf{x})}_{\text{GCA}} \underbrace{p_{\phi(\gamma)}(z | \mathbf{x}, y)}_?.$$

To estimate γ , we could rely on Maximum Likelihood theory:

$$\ell(\boldsymbol{\gamma};\mathcal{T}) = \sum_{i=1}^{n} \ln p_{\boldsymbol{\gamma}}(y_i,\mathsf{f}|\boldsymbol{x}_i) + \sum_{i=n+1}^{n+n'} \ln \sum_{y \in \{0,1\}} p_{\boldsymbol{\gamma}}(y,\mathsf{nf}|\boldsymbol{x}_i).$$

No free lunch: financial or statistical investment to make. Because no test-sample $\mathcal{T}^{\text{test}}$ is available from $p(\mathbf{x}, y)$, we cannot resort to error-rate criteria: Error $(\mathcal{T}^{\text{test}}) = \frac{1}{|\mathcal{T}^{\text{test}}|} \sum_{i \in \mathcal{T}^{\text{test}}} \mathbb{I}(\hat{y}_i \neq y_i)$. No free lunch: financial or statistical investment to make. Because no test-sample $\mathcal{T}^{\text{test}}$ is available from $p(\mathbf{x}, y)$, we cannot resort to error-rate criteria: Error $(\mathcal{T}^{\text{test}}) = \frac{1}{|\mathcal{T}^{\text{test}}|} \sum_{i \in \mathcal{T}^{\text{test}}} \mathbb{I}(\hat{y}_i \neq y_i)$.

We should use information criteria on the observed data ${\mathcal T}$ such as:

$$\mathsf{BIC}(\hat{\gamma};\mathcal{T}) = -2\ell(\hat{\gamma};\mathcal{T}) + \mathsf{dim}(\Gamma) \ln n,$$

where $\hat{\boldsymbol{\gamma}} = \operatorname{argmax}_{\boldsymbol{\gamma}} \ell(\boldsymbol{\gamma}; \mathcal{T})$, to compare models.

No free lunch: financial or statistical investment to make. Because no test-sample $\mathcal{T}^{\text{test}}$ is available from $p(\mathbf{x}, y)$, we cannot resort to error-rate criteria: Error $(\mathcal{T}^{\text{test}}) = \frac{1}{|\mathcal{T}^{\text{test}}|} \sum_{i \in \mathcal{T}^{\text{test}}} \mathbb{I}(\hat{y}_i \neq y_i)$.

We should use information criteria on the observed data ${\mathcal T}$ such as:

$$\mathsf{BIC}(\hat{\gamma};\mathcal{T}) = -2\ell(\hat{\gamma};\mathcal{T}) + \mathsf{dim}(\Gamma) \ln n,$$

where $\hat{\gamma} = \operatorname{argmax}_{\gamma} \ell(\gamma; \mathcal{T})$, to compare models.

It requires to precisely state the models $\{p_{\gamma}(y, z | \mathbf{x})\}_{\Gamma}$ that compete and their underlying assumptions.

Reject Inference: strategies

We gathered 6 so-called Reject Inference methods from the literature that aim at re-injecting x_{nf} into the estimation procedure of θ .

They usually resemble EM-like algorithms:

Can we reinterpret these empirical methods in the missing data and information criterion frameworks and / or expose their implicit modelling steps?

Estimate $\hat{\theta}_{f} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{T}_{f})$, infer for $n + 1 \leq i \leq n + n'$:

 $\hat{y}_i = p_{\hat{\theta}_f}(1|\boldsymbol{x}_i),$

²Nguyen, <u>Reject inference in application scorecards</u>.

Estimate $\hat{\theta}_{f} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{T}_{f})$, infer for $n + 1 \leq i \leq n + n'$: $\hat{y}_{i} = p_{\hat{\theta}_{f}}(1|\mathbf{x}_{i})$,

and re-estimate θ using the resulting \mathcal{T}_{c} . For $1 \leq j \leq d$:

$$rac{\partial \sum_{i=n+1}^{n'+n} \sum_{y_i=0}^1 p_{\hat{oldsymbol{ heta}}_{\mathrm{f}}}(y_i|oldsymbol{x}_i) \ln(p_{oldsymbol{ heta}}(y_i|oldsymbol{x}_i))}{\partial heta_j} = 0 \Leftrightarrow oldsymbol{ heta} = \hat{oldsymbol{ heta}}_{\mathrm{f}},$$

²Nguyen, <u>Reject inference in application scorecards</u>.

Estimate $\hat{\theta}_{f} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{T}_{f})$, infer for $n + 1 \leq i \leq n + n'$: $\hat{y}_{i} = p_{\hat{\theta}_{f}}(1|\mathbf{x}_{i})$,

and re-estimate θ using the resulting \mathcal{T}_{c} . For $1 \leq j \leq d$:

$$\frac{\partial \sum_{i=n+1}^{n'+n} \sum_{y_i=0}^{1} p_{\hat{\theta}_{\mathsf{f}}}(y_i | \boldsymbol{x}_i) \ln(p_{\boldsymbol{\theta}}(y_i | \boldsymbol{x}_i))}{\partial \theta_j} = 0 \Leftrightarrow \boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_{\mathsf{f}},$$

such that:

$$\underset{\boldsymbol{\theta}\in\Theta}{\operatorname{argmax}}\sum_{i=n+1}^{n'+n}\sum_{y_i=0}^1p_{\hat{\theta}_{\mathsf{f}}}(y_i|\boldsymbol{x}_i)\ln(p_{\boldsymbol{\theta}}(y_i|\boldsymbol{x}_i))=\hat{\theta}_{\mathsf{f}}.$$

²Nguyen, <u>Reject inference in application scorecards</u>.

Estimate $\hat{\theta}_{f} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{T}_{f})$, infer for $n + 1 \leq i \leq n + n'$: $\hat{y}_{i} = p_{\hat{\theta}_{f}}(1|\mathbf{x}_{i})$,

and re-estimate θ using the resulting \mathcal{T}_{c} . For $1 \leq j \leq d$:

$$\frac{\partial \sum_{i=n+1}^{n'+n} \sum_{y_i=0}^{1} p_{\hat{\theta}_{\mathsf{f}}}(y_i | \boldsymbol{x}_i) \ln(p_{\boldsymbol{\theta}}(y_i | \boldsymbol{x}_i))}{\partial \theta_j} = 0 \Leftrightarrow \boldsymbol{\theta} = \hat{\boldsymbol{\theta}}_{\mathsf{f}},$$

such that:

$$\operatorname*{argmax}_{\boldsymbol{\theta}\in\Theta} \sum_{i=n+1}^{n'+n} \sum_{y_i=0}^1 p_{\hat{\theta}_{\mathsf{f}}}(y_i|\boldsymbol{x}_i) \ln(p_{\boldsymbol{\theta}}(y_i|\boldsymbol{x}_i)) = \hat{\theta}_{\mathsf{f}}.$$

Finally:

$$rgmax_{oldsymbol{ heta}\in\Theta}\ell(oldsymbol{ heta};\mathcal{T}_{\mathsf{c}}) = rgmax_{oldsymbol{ heta}\in\Theta}\ell(oldsymbol{ heta};\mathcal{T}_{\mathsf{f}}) = \hat{ heta}_{\mathsf{f}}.$$

²Nguyen, <u>Reject inference in application scorecards</u>.

Reject Inference: missingness mechanism

► MAR³:
$$\forall x, y, z, p(z|x, y) = p(z|x)$$

 \rightarrow Financing is determined by an old score: $Z = \mathbb{1}_{\{(1,x)'\theta > cut\}}$.

³Little and Rubin, <u>Statistical analysis with missing data</u>. ⁴Molenberghs et al., "Every missingness not at random model has a missingness at random counterpart with equal fit".

Reject Inference: missingness mechanism

MAR³: ∀ x, y, z, p(z|x, y) = p(z|x) → Financing is determined by an old score: Z = 1_{{(1,x)}/θ>cut}</sub>.
MNAR³: ∃ x, y, z, p(z|x, y) ≠ p(z|x) → Operators' hidden "feeling" X̃ influence the financing. → Expert rules based on both present and hidden features X and X̃ resp. where X̃ cannot be totally explained by X. → Cannot be tested⁴.

³Little and Rubin, <u>Statistical analysis with missing data</u>. ⁴Molenberghs et al., "Every missingness not at random model has a missingness at random counterpart with equal fit".

Reject Inference: missingness mechanism

MAR³: ∀ x, y, z, p(z|x, y) = p(z|x) → Financing is determined by an old score: Z = 1_{(1,x)'θ>cut}.
MNAR³: ∃ x, y, z, p(z|x, y) ≠ p(z|x) → Operators' hidden "feeling" X̃ influence the financing. → Expert rules based on both present and hidden features X and X̃ resp. where X̃ cannot be totally explained by X. → Cannot be tested⁴.

³Little and Rubin, <u>Statistical analysis with missing data</u>. ⁴Molenberghs et al., "Every missingness not at random model has a missingness at random counterpart with equal fit".

Reject Inference: research contribution

Fuzzy Augmentation and Twins produce the same coefficient $\hat{ heta}_{ ext{f}}.$

Reclassification^{5,6,7} is equivalent to a Classification-EM algorithm, thus introducing a bias in the estimation of θ .

	MAR	MNAR
Well-specified model	$\hat{ heta}_{ extsf{f}}$ is unbiased.	$\hat{ heta}_{ extsf{f}}$ is biased.
Misspecified model	$\hat{ heta}_{f}$ is biased: Augmentation ^{2,5,6,7} could be suitable but introduces a new estimation procedure ⁸ (which requires $\forall x, p(f x) > 0$).	Any correction relies on <i>a priori</i> unverifiable assumptions about $p_{\phi}(z \mathbf{x}, y)$, <i>e.g.</i> the Parcelling ^{5,6,7} method.

⁵Guizani et al., "Une Comparaison de quatre Techniques d'Inférence des Refusés dans le Processus d'Octroi de Crédit".

⁶Soulié and Viennet, "Le Traitement des Refusés dans le Risque Crédit".

⁷Banasik and Crook, "Reject inference, augmentation, and sample selection".

⁸Zadrozny, "Learning and evaluating classifiers under sample selection bias". 18/5

Reject Inference: augmentation

For "local" misspecified models and "global" models:

$$\mathbb{E}_{\mathbf{x},y}[\ln[p_{\theta}(y|\mathbf{x})]] = \sum_{y=0}^{1} \int_{\mathcal{X}} \ln p_{\theta}(y|\mathbf{x}) p(y|\mathbf{x}) p(\mathbf{x}) d\mathbf{x}$$
$$= \sum_{y=0}^{1} \int_{\mathcal{X}} p(\mathbf{f}) \ln p_{\theta}(y|\mathbf{x}) \frac{p(\mathbf{x}|\mathbf{f})}{p(\mathbf{f}|\mathbf{x})} p(y|\mathbf{x}) d\mathbf{x}$$
$$= \sum_{y=0}^{1} \int_{\mathcal{X}} p(\mathbf{f}) \frac{\ln p_{\theta}(y|\mathbf{x})}{p(\mathbf{f}|\mathbf{x})} p(\mathbf{x}, y|\mathbf{f}) d\mathbf{x}$$
$$\approx \frac{1}{n} \sum_{i \in \mathcal{T}_{\mathbf{f}}} \frac{p(\mathbf{f})}{p(\mathbf{f}|\mathbf{x}_{i})} \ln p_{\theta}(y_{i}|\mathbf{x}_{i}).$$

Reject Inference: augmentation

For "local" misspecified models and "global" models:

$$\begin{split} \mathbb{E}_{\mathbf{x},y}[\ln[p_{\theta}(y|\mathbf{x})]] &= \sum_{y=0}^{1} \int_{\mathcal{X}} \ln p_{\theta}(y|\mathbf{x}) p(y|\mathbf{x}) p(\mathbf{x}) d\mathbf{x} \\ &= \sum_{y=0}^{1} \int_{\mathcal{X}} p(\mathbf{f}) \ln p_{\theta}(y|\mathbf{x}) \frac{p(\mathbf{x}|\mathbf{f})}{p(\mathbf{f}|\mathbf{x})} p(y|\mathbf{x}) d\mathbf{x} \\ &= \sum_{y=0}^{1} \int_{\mathcal{X}} p(\mathbf{f}) \frac{\ln p_{\theta}(y|\mathbf{x})}{p(\mathbf{f}|\mathbf{x})} p(\mathbf{x}, y|\mathbf{f}) d\mathbf{x} \\ &\approx \frac{1}{n} \sum_{i \in \mathcal{T}_{\mathbf{f}}} \frac{p(\mathbf{f})}{p(\mathbf{f}|\mathbf{x}_{i})} \ln p_{\theta}(y_{i}|\mathbf{x}_{i}). \end{split}$$

This assumes $p(f|\mathbf{x}) > 0 \ \forall x$, which is wrong.

Reject Inference: augmentation

For "local" misspecified models and "global" models:

$$\begin{split} \mathbb{E}_{\mathbf{x},y}[\ln[p_{\theta}(y|\mathbf{x})]] &= \sum_{y=0}^{1} \int_{\mathcal{X}} \ln p_{\theta}(y|\mathbf{x}) p(y|\mathbf{x}) p(\mathbf{x}) d\mathbf{x} \\ &= \sum_{y=0}^{1} \int_{\mathcal{X}} p(\mathbf{f}) \ln p_{\theta}(y|\mathbf{x}) \frac{p(\mathbf{x}|\mathbf{f})}{p(\mathbf{f}|\mathbf{x})} p(y|\mathbf{x}) d\mathbf{x} \\ &= \sum_{y=0}^{1} \int_{\mathcal{X}} p(\mathbf{f}) \frac{\ln p_{\theta}(y|\mathbf{x})}{p(\mathbf{f}|\mathbf{x})} p(\mathbf{x}, y|\mathbf{f}) d\mathbf{x} \\ &\approx \frac{1}{n} \sum_{i \in \mathcal{T}_{\mathbf{f}}} \frac{p(\mathbf{f})}{p(\mathbf{f}|\mathbf{x}_{i})} \ln p_{\theta}(y_{i}|\mathbf{x}_{i}). \end{split}$$

This assumes $p(f|\mathbf{x}) > 0 \ \forall x$, which is wrong.

Further, one needs to specify / model $p(f|\mathbf{x})$.

Reject Inference: industry contribution

Feature quantization

Feature quantization: by an example

For theoretical reasons: bias-variance tradeoff.

For practical reasons: interpretability, outliers... ... at the expense of the statistician's time.

Quantized data

$$\begin{split} \boldsymbol{q}(\boldsymbol{x}) &= (\boldsymbol{q}_1(x_1), \dots, \boldsymbol{q}_d(x_d)) \\ \boldsymbol{q}_j(x_j) &= (q_{j,h}(x_j))_1^{m_j} \text{ (one-hot encoding)} \\ q_{j,h}(\cdot) &= \mathbb{1}(x_j \in C_{j,h}), 1 \leq h \leq m_j \end{split}$$

Quantization is model selection (illustrated here with BIC).

Oracle

$$\begin{split} \boldsymbol{\theta}^{\star}, \boldsymbol{q}^{\star} &= \operatorname*{argmax}_{\boldsymbol{\theta}\in\Theta_{q}, \boldsymbol{q}\in\boldsymbol{\mathcal{Q}}} \mathbb{E}_{\mathsf{x}, y} \left[\ln p_{\boldsymbol{\theta}}(y|\boldsymbol{q}(\mathsf{x})) \right], \\ \hat{\boldsymbol{\theta}}^{\mathsf{BIC}}, \hat{\boldsymbol{q}}^{\mathsf{BIC}} &= \operatorname*{argmin}_{\boldsymbol{\theta}\in\Theta_{q}, \boldsymbol{q}\in\boldsymbol{\mathcal{Q}}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\boldsymbol{q}}; \mathsf{y}_{\mathsf{f}}, \boldsymbol{q}(\mathsf{x}_{\mathsf{f}})), \\ & \text{where } \hat{\boldsymbol{\theta}}_{\boldsymbol{q}} = \operatorname*{argmax}_{\boldsymbol{\theta}\in\Theta_{q}} \ell(\boldsymbol{\theta}; \mathsf{y}_{\mathsf{f}}, \boldsymbol{q}(\mathsf{x}_{\mathsf{f}})). \\ & \text{Implicitly assumes quantizations are "well" separated.} \end{split}$$

Quantization becomes an algorithmic problem.

Feature quantization: existing approaches

These approaches⁹ maximize an "intermediary" criterion, *e.g.*: $\hat{\boldsymbol{q}}_{j}^{\chi^{2}} = \operatorname{argmax} \chi^{2}(\boldsymbol{q}_{j}(\mathbf{x}_{f}), \mathbf{y}_{f}) \stackrel{?}{\approx} \boldsymbol{q}_{j}^{\star},$ and we hope that it's aligned with our original goal s.t.: $\hat{\boldsymbol{\theta}}^{\chi^{2}} = \operatorname{argmax} \ell(\boldsymbol{\theta}; \mathbf{y}_{f}, \hat{\boldsymbol{q}}^{\chi^{2}}(\mathbf{x}_{f})) \stackrel{?}{\approx} \boldsymbol{\theta}^{\star}.$

⁹Ramirez-Gallego et al., "Data Discretization: Taxonomy and Big Data Challenge".

Feature quantization: MAP estimation

¹⁰Chamroukhi et al., "A regression model with a hidden logistic process for feature extraction from time series".

¹¹Samé et al., "Model-based clustering and segmentation of time series with changes in regime".

Feature quantization: neural networks

Feature quantization: neural networks

Simulated data

Table: For different sample sizes n, (A) Cl of $\hat{c}_{j,2}$ for $c_{j,2} = 2/3$. (B) Cl of \hat{m} for $m_1 = 3$. (C) Cl of \hat{m}_3 for $m_3 = 1$.

CACF data

Table: Gini indices (the greater the value, the better the performance) of our proposed quantization algorithm *glmdisc*, the two baselines and the current scorecard.

Portfolio	ALLR	Current	ad hoc	Our proposal:	Our proposal:	glmdisc-SEM
		performance	methods	<i>glmdisc</i> -NN	glmdisc-SEM	w. interactions
Automobile	59.3 (3.1)	55.6 (3.4)	59.3 (3.0)	58.9 (2.6)	57.8 (2.9)	64.8 (2.0)
Renovation	52.3 (5.5)	50.9 (5.6)	54.0 (5.1)	56.7 (4.8)	55.5 (5.2)	55.5 (5.2)
Standard	39.7 (3.3)	37.1 (3.8)	45.3 (3.1)	43.8 (3.2)	36.7 (3.7)	47.2 (2.8)
Revolving	62.7 (2.8)	58.5 (3.2)	63.2 (2.8)	62.3 (2.8)	60.7 (2.8)	67.2 (2.5)
Mass retail	52.8 (5.3)	48.7 (6.0)	61.4 (4.7)	61.8 (4.6)	61.0 (4.7)	60.3 (4.8)
Electronics	52.9 (11.9)	55.8 (10.8)	56.3 (10.2)	72.6 (7.4)	62.0 (9.5)	63.7 (9.0)

Segmentation: logistic regression trees

Figure: Scorecards tree structure in acceptance system.

 Promise a new partner their own score to maximize acceptance;

- Promise a new partner their own score to maximize acceptance;
- Merge existing "close" branches that show similar performance;

- Promise a new partner their own score to maximize acceptance;
- Merge existing "close" branches that show similar performance; Try basic "clustering" techniques, *e.g.* visual separation of the data and / or levels on the two first MCA axes.

- Promise a new partner their own score to maximize acceptance;
- Merge existing "close" branches that show similar performance; Try basic "clustering" techniques, *e.g.* visual separation of the data and / or levels on the two first MCA axes.

Problem(s):

- Promise a new partner their own score to maximize acceptance;
- Merge existing "close" branches that show similar performance; Try basic "clustering" techniques, *e.g.* visual separation of the data and / or levels on the two first MCA axes.

Problem(s):

This structure is not the result of optimization and is probably suboptimal (by how much?);

- Promise a new partner their own score to maximize acceptance;
- Merge existing "close" branches that show similar performance; Try basic "clustering" techniques, *e.g.* visual separation of the data and / or levels on the two first MCA axes.

Problem(s):

- This structure is not the result of optimization and is probably suboptimal (by how much?);
- There are situations in which it severely fails.

Segmentation: logistic regression trees

Revenus

Segmentation: logistic regression trees

Revenus

Revenus

Revenus

Similarly to the quantization proposal: ability to be in several segments at a time.

Similarly to the quantization proposal: ability to be in several segments at a time.

$$p(y|\mathbf{x}) = \sum_{c=1}^{K} \underbrace{p_{\theta}(y|\mathbf{x};c)}_{\substack{\text{optimized'' GCA "unoptimized'' relaxed \\ \text{constraint}}} \underbrace{p_{\beta}(c|\mathbf{x})}_{\text{CACF constraint}},$$

where $p_{\beta}(c|\mathbf{x})$ is given by the classification tree as the proportion of training samples in each leaf (not majority vote).

wh of t

Similarly to the quantization proposal: ability to be in several segments at a time.

$$\begin{split} p(y|\mathbf{x}) &= \sum_{c=1}^{K} \underbrace{p_{\theta}(y|\mathbf{x};c)}_{\text{"optimized" GCA "unoptimized" relaxed}} \underbrace{p_{\beta}(c|\mathbf{x})}_{\text{CACF constraint}}, \\ \text{ere } p_{\beta}(c|\mathbf{x}) \text{ is given by the classification tree as the proportion} \\ \text{raining samples in each leaf (not majority vote).} \\ c_i^{(s)} &\sim p_{\theta \cdot (s-1)}(y_i|\mathbf{x}_i;\cdot)p_{\beta(s-1)}(\cdot|\mathbf{x}_i). \end{split}$$

Similarly to the quantization proposal: ability to be in several segments at a time.

$$p(y|\mathbf{x}) = \sum_{c=1}^{K} \underbrace{p_{\theta}(y|\mathbf{x}; c)}_{\substack{\text{optimized'' GCA "unoptimized'' relaxed \\ \text{constraint}}} \underbrace{p_{\beta}(c|\mathbf{x})}_{\text{CACF constraint}},$$

where $p_{\beta}(c|\mathbf{x})$ is given by the classification tree as the proportion of training samples in each leaf (**not** majority vote).

$$c_i^{(s)} \sim p_{\boldsymbol{\theta}^{\cdot(s-1)}}(y_i|\boldsymbol{x}_i;\cdot)p_{\beta^{(s-1)}}(\cdot|\boldsymbol{x}_i).$$

$$heta^{c(s)} = \operatorname*{argmax}_{ heta^c} \sum_{i=1}^n \mathbbm{1}_c(c_i^{(s)}) \ln p_{ heta^c}(y_i | \mathbf{x}_i; c_i).$$

Similarly to the quantization proposal: ability to be in several segments at a time.

$$p(y|\mathbf{x}) = \sum_{c=1}^{K} \underbrace{p_{\theta}(y|\mathbf{x}; c)}_{\substack{\text{optimized'' GCA "unoptimized'' relaxed \\ \text{constraint}}} \underbrace{p_{\beta}(c|\mathbf{x})}_{\text{CACF constraint}},$$

where $p_{\beta}(c|\mathbf{x})$ is given by the classification tree as the proportion of training samples in each leaf (not majority vote).

$$c_i^{(s)} \sim p_{\boldsymbol{\theta}^{\cdot(s-1)}}(y_i | \boldsymbol{x}_i; \cdot) p_{\beta^{(s-1)}}(\cdot | \boldsymbol{x}_i).$$

$$heta^{c(s)} = \operatorname*{argmax}_{ heta^c} \sum_{i=1}^n \mathbbm{1}_c(c_i^{(s)}) \ln p_{ heta^c}(y_i | \mathbf{x}_i; c_i).$$

 $\beta^{(s)} = \mathsf{C4.5}(\mathsf{c}^{(s)},\mathsf{x}).$

Segmentation: logistic regression trees: some results

Segmentation: logistic regression trees: some results

Segmentation: logistic regression trees: some results

	Logistic	Decision	SEM	Gradient
	regression	Tree		Boosting
AUC (\pm vs current method)	-3,02	-2,66	-1,78	-0,17

	SEM	LMT	MOB
<pre># segment (current: 9)</pre>	2	11	1
AUC (\pm vs current method)	-1,52	-7,70	-5,21

Missing data imputation

Missing data imputation: some results I

Research internship: comparing missing data imputation methods, mostly in MAR situations.

Missing data imputation: some results II

Missing data imputation: some results III

Missing data imputation: some results IV

Missing data imputation: some results V

Carbon risk

Research internship: use carbon price scenarios to impact the earnings of big corporations and adjust their default probability accordingly.

NLP for extra-financial reports

NLP for extra-financial reports: some results I

Research internship: build joint NER and RE models to automatically read through extra-financial reports.

NLP for extra-financial reports: some results II

Conclusion and future work

This PhD tackled three main issues of "traditional" Credit Scoring:1. Reject inference: impact of tossing away not-financed clients,

This PhD tackled three main issues of "traditional" Credit Scoring:
1. Reject inference: impact of tossing away not-financed clients, Conclusion: sound problem reformulation, no method recommended, scoringTools R package.

- 1. Reject inference: impact of tossing away not-financed clients,
- 2. "Constrained" representation learning: discretization, grouping, interaction screening,

- 1. Reject inference: impact of tossing away not-financed clients,
- 2. "Constrained" representation learning: discretization, grouping, interaction screening,

Conclusion: better performance, less time-consuming, glmdisc R and Python packages.

- 1. Reject inference: impact of tossing away not-financed clients,
- 2. "Constrained" representation learning: discretization, grouping, interaction screening,
- 3. Predictive segmentation: logistic regression trees,

- 1. Reject inference: impact of tossing away not-financed clients,
- 2. "Constrained" representation learning: discretization, grouping, interaction screening,
- 3. Predictive segmentation: logistic regression trees,

Conclusion: first experiments on simulated and real data are encouraging, glmtree R package.

 Credit Scoring for profit: swap "p(2 unpaid instalments)" for p(profit> 0) or E[profit],

Credit Scoring for profit: swap "p(2 unpaid instalments)" for p(profit> 0) or 𝔼[profit],

Perspective: experiment observation-wise misclassification costs.

- Credit Scoring for profit: swap "p(2 unpaid instalments)" for p(profit> 0) or E[profit],
- 2. Representation learning for fine-grained unstructured data,

- Credit Scoring for profit: swap "p(2 unpaid instalments)" for p(profit> 0) or E[profit],
- 2. Representation learning for fine-grained unstructured data, Perspective: provide statistically sound methods to aggregate "behavioural" data, *e.g.* web visitation patterns.

Thanks!

References I

- John Banasik and Jonathan Crook. "Reject inference, augmentation, and sample selection". In: <u>European Journal of Operational Research</u> 183.3 (2007), pp. 1582–1594. url: http://www.sciencedirect.com/science/ article/pii/S0377221706011969 (visited on 08/25/2016).
- [2] Faicel Chamroukhi et al. "A regression model with a hidden logistic process for feature extraction from time series". In: <u>International Joint Conference on Neural Networks</u>, 2009. IJCNN 2009. IEEE. 2009, pp. 489–496.
- [3] Asma Guizani et al. "Une Comparaison de quatre Techniques d'Inférence des Refusés dans le Processus d'Octroi de Crédit". In: 45 èmes Journées de statistique. 2013. url: http://cedric.cnam.fr/fichiers/art_2753.pdf (visited on 08/25/2016).
- [4] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data. John Wiley & Sons, 2014.

References II

- [5] Geert Molenberghs et al. "Every missingness not at random model has a missingness at random counterpart with equal fit". In: <u>Journal of the Royal Statistical Society: Series B</u> 7.2 (2008), pp. 371–388.
- [6] Ha Thu Nguyen. Reject inference in application scorecards: evidence from France. Tech. rep. University of Paris West-Nanterre la Défense, EconomiX, 2016. url: http://economix.fr/pdf/dt/2016/WP_EcoX_2016-10.pdf (visited on 08/25/2016).
- Sergio Ramirez-Gallego et al. "Data Discretization: Taxonomy and Big Data Challenge". In:
 Wiley Int. Rev. Data Min. and Knowl. Disc. 6.1 (Jan. 2016), pp. 5–21. issn: 1942-4787. doi: 10.1002/widm.1173. url: http://dx.doi.org/10.1002/widm.1173.

- [8] Allou Samé et al. "Model-based clustering and segmentation of time series with changes in regime". In: <u>Advances in Data Analysis and Classification</u> 5.4 (2011), pp. 301–321.
- [9] Françoise Fogelman Soulié and Emmanuel Viennet. "Le Traitement des Refusés dans le Risque Crédit". In: <u>Revue des Nouvelles Technologies de l'Information</u> Data Mining et Apprentissage Statistique : application en assurance, banque et marketing, RNTI-A-1 (2007), pp. 22–44.
- [10] Bianca Zadrozny. "Learning and evaluating classifiers under sample selection bias". In: <u>Proceedings of the twenty-first ICML</u>. ACM. 2004, p. 114.

Quantization

"Soft" approximation:

$$oldsymbol{q}_{oldsymbol{lpha}_{j}}(\cdot) = ig(q_{oldsymbol{lpha}_{j,h}}(\cdot)ig)_{h=1}^{m_{j}} ext{ with } egin{cases} \sum_{h=1}^{m_{j}} q_{oldsymbol{lpha}_{j,h}}(\cdot) = 1, \ 0 \leq q_{oldsymbol{lpha}_{j,h}}(\cdot) \leq 1, \end{cases}$$

"Soft" approximation:

$$oldsymbol{q}_{oldsymbol{lpha}_{j}}(\cdot) = ig(q_{oldsymbol{lpha}_{j,h}}(\cdot)ig)_{h=1}^{m_{j}} ext{ with } egin{cases} \sum_{h=1}^{m_{j}} q_{oldsymbol{lpha}_{j,h}}(\cdot) = 1, \ 0 \leq q_{oldsymbol{lpha}_{j,h}}(\cdot) \leq 1, \end{cases}$$

For continuous features, we set for $\alpha_{j,h} = (\overline{\alpha_{j,h}^0, \alpha_{j,h}^1}) \in \mathbb{R}^2$

$$q_{\alpha_{j,h}}(\cdot) = \frac{\exp(\alpha_{j,h}^0 + \alpha_{j,h}^1 \cdot)}{\sum_{g=1}^{m_j} \exp(\alpha_{j,g}^0 + \alpha_{j,g}^1 \cdot)}$$

"Soft" approximation:

$$oldsymbol{q}_{oldsymbol{lpha}_{j}}(\cdot) = ig(q_{oldsymbol{lpha}_{j,h}}(\cdot)ig)_{h=1}^{m_{j}} ext{ with } egin{cases} \sum_{h=1}^{m_{j}} q_{oldsymbol{lpha}_{j,h}}(\cdot) = 1, \ 0 \leq q_{oldsymbol{lpha}_{j,h}}(\cdot) \leq 1, \end{cases}$$

For continuous features, we set for $\alpha_{j,h} = (\alpha_{j,h}^0, \alpha_{j,h}^1) \in \mathbb{R}^2$

$$q_{oldsymbol{lpha}_{j,h}}(\cdot) = rac{\exp(lpha_{j,h}^0 + lpha_{j,h}^1 \cdot)}{\sum_{g=1}^{m_j} \exp(lpha_{j,g}^0 + lpha_{j,g}^1 \cdot)}.$$

For categorical features, we set for $\alpha_{j,h} = (\alpha_{j,h}(1), \dots, \alpha_{j,h}(l_j)) \in \mathbb{R}^{l_j}$

$$q_{\boldsymbol{\alpha}_{j,h}}(\cdot) = \frac{\exp\left(\alpha_{j,h}(\cdot)\right)}{\sum_{g=1}^{m_j} \exp\left(\alpha_{j,g}(\cdot)\right)}$$

We wish to maximize the following likelihood:

$$(\hat{\theta}, \hat{\alpha}) = \operatorname*{argmax}_{\theta, \alpha} \ell(\theta, \alpha; \mathsf{x}_{\mathsf{f}}, \mathsf{y}_{\mathsf{f}}) = \operatorname*{argmax}_{\theta, \alpha} \sum_{i=1}^{n} \ln p_{\theta}(y_{i} | \boldsymbol{q}_{\alpha}(\boldsymbol{x}_{i})).$$

" $\alpha^{\star} = \lim_{n \to \infty} \hat{\alpha}$ " should be such that $q_{\alpha^{\star}} = q^{\star}$.

We wish to maximize the following likelihood:

$$(\hat{\theta}, \hat{\alpha}) = \operatorname*{argmax}_{\theta, \alpha} \ell(\theta, \alpha; \mathsf{x}_{\mathsf{f}}, \mathsf{y}_{\mathsf{f}}) = \operatorname*{argmax}_{\theta, \alpha} \sum_{i=1}^{n} \ln p_{\theta}(y_{i} | \boldsymbol{q}_{\alpha}(\boldsymbol{x}_{i})).$$

" $\alpha^{\star} = \lim_{n \to \infty} \hat{\alpha}$ " should be such that $\boldsymbol{q}_{\alpha^{\star}} = \boldsymbol{q}^{\star}$.

Problem: $\hat{\alpha}$ has to diverge, the MLE is at the border of the parameter space which could hinder its properties.

We wish to maximize the following likelihood:

$$(\hat{\theta}, \hat{lpha}) = \operatorname*{argmax}_{\theta, \alpha} \ell(\theta, \alpha; \mathsf{x}_{\mathsf{f}}, \mathsf{y}_{\mathsf{f}}) = \operatorname*{argmax}_{\theta, \alpha} \sum_{i=1}^{n} \ln p_{\theta}(y_{i} | \boldsymbol{q}_{\alpha}(\boldsymbol{x}_{i})).$$

" $\alpha^{\star} = \lim_{n \to \infty} \hat{\alpha}$ " should be such that $\boldsymbol{q}_{\alpha^{\star}} = \boldsymbol{q}^{\star}$.

Problem: $\hat{\alpha}$ has to diverge, the MLE is at the border of the parameter space which could hinder its properties.

Anyway, or more generally if there is no true quantization q^* , \hat{q} is used instead as a quantization candidate.

We wish to maximize the following likelihood:

$$(\hat{\theta}, \hat{lpha}) = \operatorname*{argmax}_{\theta, \alpha} \ell(\theta, \alpha; \mathsf{x}_{\mathsf{f}}, \mathsf{y}_{\mathsf{f}}) = \operatorname*{argmax}_{\theta, \alpha} \sum_{i=1}^{n} \ln p_{\theta}(y_{i} | \boldsymbol{q}_{\alpha}(\boldsymbol{x}_{i})).$$

" $\alpha^{\star} = \lim_{n \to \infty} \hat{\alpha}$ " should be such that $q_{\alpha^{\star}} = q^{\star}$.

Problem: $\hat{\alpha}$ has to diverge, the MLE is at the border of the parameter space which could hinder its properties.

Anyway, or more generally if there is no true quantization q^* , \hat{q} is used instead as a quantization candidate.

Problem: $\ell(\theta, \alpha; x_f, y_f)$ cannot be directly maximized.

Solution: Resort to (stochastic) gradient descent which each step (s) will yield $\hat{\alpha}^{(s)}$ and quantization candidate $\hat{q}^{(s)}$.

We have drastically restricted the search space to *iter* well-chosen candidates resulting from the the gradient descent steps.

$$s^{\star} = \mathop{\mathrm{argmin}}\limits_{s=1,...,iter} \mathsf{BIC}(\hat{ heta}_{\hat{m{q}}^{(s)}})$$

We have drastically restricted the search space to *iter* well-chosen candidates resulting from the the gradient descent steps.

$$s^{\star} = \mathop{\mathrm{argmin}}\limits_{s=1,...,iter} \mathsf{BIC}(\hat{ heta}_{\hat{m{q}}^{(s)}})$$

We would still need to loop over candidates m!

We have drastically restricted the search space to *iter* well-chosen candidates resulting from the the gradient descent steps.

$$s^{\star} = \mathop{\mathrm{argmin}}\limits_{s=1,...,iter} \mathsf{BIC}(\hat{ heta}_{\hat{m{q}}^{(s)}})$$

We would still need to loop over candidates m!

In practice if $\forall i, q_{\alpha_{j,h}}(x_j) \ll 1$, then level *h* disappears while performing the argmax.

We have drastically restricted the search space to *iter* well-chosen candidates resulting from the the gradient descent steps.

$$s^{\star} = \mathop{\mathrm{argmin}}\limits_{s=1,...,iter} \mathsf{BIC}(\hat{ heta}_{\hat{m{q}}^{(s)}})$$

We would still need to loop over candidates m!

In practice if $\forall i, q_{\alpha_{j,h}}(x_j) \ll 1$, then level *h* disappears while performing the argmax.

Start with $\boldsymbol{m} = (m_{\max})_1^d$ and "wait" ...

Bivariate interactions

Upper triangular matrix with $\delta_{k,\ell} = 1$ if $k < \ell$ and features k and ℓ "interact" in the logistic regression.

$$\mathsf{logit}(p_{m{ heta}}(1|m{q}(m{x}))) = heta_0 + \sum_{j=1}^d heta_j^{m{q}_j(x_j)} + \sum_{1 \leq k < \ell \leq d} \delta_{k,\ell} heta_{k,\ell}^{m{q}_k(x_k)m{q}_\ell(x_\ell)}.$$

Upper triangular matrix with $\delta_{k,\ell} = 1$ if $k < \ell$ and features k and ℓ "interact" in the logistic regression.

$$\mathsf{logit}(p_{m{ heta}}(1|m{q}(m{x}))) = heta_0 + \sum_{j=1}^d heta_j^{m{q}_j(x_j)} + \sum_{1 \leq k < \ell \leq d} \delta_{k,\ell} heta_{k,\ell}^{m{q}_k(x_k)m{q}_\ell(x_\ell)}.$$

Imagine for now that the discretization q(x) is fixed. The criterion becomes:

$$(m{ heta}^{\star},m{\delta}^{\star}) = \operatorname*{argmin}_{m{ heta},\delta\in\{0,1\}^{rac{d(d-1)}{2}}} \operatorname{BIC}(\hat{m{ heta}}_{\delta};\mathcal{T}_{\mathrm{f}}).$$

Upper triangular matrix with $\delta_{k,\ell} = 1$ if $k < \ell$ and features k and ℓ "interact" in the logistic regression.

$$\mathsf{logit}(p_{m{ heta}}(1|m{q}(m{x}))) = heta_0 + \sum_{j=1}^d heta_j^{m{q}_j(x_j)} + \sum_{1 \leq k < \ell \leq d} \delta_{k,\ell} heta_{k,\ell}^{m{q}_k(x_k)m{q}_\ell(x_\ell)}.$$

Imagine for now that the discretization q(x) is fixed. The criterion becomes:

$$(\boldsymbol{ heta}^{\star}, \boldsymbol{\delta}^{\star}) = \operatorname*{argmin}_{\boldsymbol{ heta}, \delta \in \{0,1\}^{rac{d(d-1)}{2}}} \mathsf{BIC}(\hat{\boldsymbol{ heta}}_{\delta}; \mathcal{T}_{\mathsf{f}}).$$

Analogous to previous problem: $2^{\frac{d(d-1)}{2}}$ models.

Bivariate interactions: model proposal

 δ is latent and hard to optimize over: use a stochastic algorithm!

 δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm. **Idea:** propose well-chosen interactions and accept / reject them based on the BIC criterion of the resulting logistic regression.

Bivariate interactions: model proposal

 δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm. **Idea:** propose well-chosen interactions and accept / reject them based on the BIC criterion of the resulting logistic regression.

$$p(y|\mathbf{q}) = \sum_{\delta \in \{0,1\}^{rac{d(d-1)}{2}}} p(y|\mathbf{q}, \delta) p(\delta)$$
 $p(\delta|\mathbf{q}, y) \propto \exp(-\mathsf{BIC}[\delta]/2) p(\delta)$

 δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm. **Idea:** propose well-chosen interactions and accept / reject them based on the BIC criterion of the resulting logistic regression.

$$p(y|\mathbf{q}) = \sum_{\delta \in \{0,1\}^{\frac{d(d-1)}{2}}} p(y|\mathbf{q}, \delta) p(\delta)$$
$$p(\delta|\mathbf{q}, y) \propto \exp(-\mathsf{BIC}[\delta]/2) p(\delta) \qquad p(\delta_{p,q}) = \frac{1}{2}$$

 δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm. **Idea:** propose well-chosen interactions and accept / reject them based on the BIC criterion of the resulting logistic regression.

 $p(y|\mathbf{q}) = \sum_{\delta \in \{0,1\}^{\frac{d(d-1)}{2}}} p(y|\mathbf{q},\delta)p(\delta)$ $p(\delta|\mathbf{q},y) \propto \exp(-\mathsf{BIC}[\delta]/2)p(\delta) \qquad p(\delta_{p,q}) = \frac{1}{2}$ Which transition proposal $T : (\{0,1\}^{\frac{d(d-1)}{2}}, \{0,1\}^{\frac{d(d-1)}{2}}) \mapsto [0;1]?$

We restrict changes to only one entry $\delta_{k,\ell}$.

We restrict changes to only one entry $\delta_{k,\ell}$.

Proposal: gain/loss in BIC between bivariate models with / without the interaction.

We restrict changes to only one entry $\delta_{k,\ell}$.

Proposal: gain/loss in BIC between bivariate models with / without the interaction.

If the interaction between two features is meaningful when only these two features are considered, there is a good chance that it will be in the full multivariate model.

We restrict changes to only one entry $\delta_{k,\ell}$.

Proposal: gain/loss in BIC between bivariate models with / without the interaction.

If the interaction between two features is meaningful when only these two features are considered, there is a good chance that it will be in the full multivariate model.

Trick: alternate one discretization / grouping step and one "interaction" step.

SEM-Gibbs quantization

q is considered a latent (unobserved) feature **q**;

- q is considered a latent (unobserved) feature q;
- A classical EM algorithm is intractable since it requires an Expectation step over all possible quantizations;

- q is considered a latent (unobserved) feature q;
- A classical EM algorithm is intractable since it requires an Expectation step over all possible quantizations;
- > Solution: random draw \approx Bayesian statistics.

"Classical" estimation strategy with latent variables: EM algorithm.

"Classical" estimation strategy with latent variables: EM algorithm.

There would still be a sum over Q_m : $p(y|\mathbf{x}, \theta, \alpha) = \sum_{\mathbf{q} \in Q_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^d p_{\alpha_j}(\mathbf{q}_j|x_j)$

"Classical" estimation strategy with latent variables: EM algorithm.

There would still be a sum over Q_m : $p(y|\mathbf{x}, \theta, \alpha) = \sum_{\mathbf{q} \in Q_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^d p_{\alpha_j}(\mathbf{q}_j|x_j)$

Use a Stochastic-EM! Draw **q** knowing that:

"Classical" estimation strategy with latent variables: EM algorithm.

There would still be a sum over \mathcal{Q}_m : $p(y|\mathbf{x}, \theta, \alpha) = \sum_{\mathbf{q} \in \mathcal{Q}_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^d p_{\alpha_j}(\mathbf{q}_j|x_j)$

Use a Stochastic-EM! Draw ${\boldsymbol{\mathfrak{q}}}$ knowing that:

$$p(\mathbf{q}|\mathbf{x}, y) = \frac{p_{\theta}(y|\mathbf{q}) \prod_{j=1}^{d} p_{\alpha_j}(\mathbf{q}_j|x_j)}{\sum_{\mathbf{q} \in \mathcal{Q}_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^{d} p_{\alpha_j}(\mathbf{q}_j|x_j)}$$
still difficult to calculate

"Classical" estimation strategy with latent variables: EM algorithm.

There would still be a sum over \mathcal{Q}_m : $p(y|\mathbf{x}, \theta, \alpha) = \sum_{\mathbf{q} \in \mathcal{Q}_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^d p_{\alpha_j}(\mathbf{q}_j|x_j)$

Use a Stochastic-EM! Draw ${\boldsymbol{\mathfrak{q}}}$ knowing that:

$$p(\mathbf{q}|\mathbf{x}, y) = \frac{p_{\theta}(y|\mathbf{q}) \prod_{j=1}^{d} p_{\alpha_j}(\mathbf{q}_j|x_j)}{\sum_{\mathbf{q} \in \boldsymbol{Q}_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^{d} p_{\alpha_j}(\mathbf{q}_j|x_j)}$$
still difficult to calculate

Gibbs-sampling step:

$$p(\mathbf{q}_j|\mathbf{x}, y, \mathbf{q}_{\{-j\}}) \propto p_{\boldsymbol{ heta}}(y|\mathbf{q}) p_{\boldsymbol{lpha}_j}(\mathbf{q}_j|\mathbf{x}_j)$$

SEM-Gibbs quantization: algorithm

Initialization

(×1,1	$x_{1,d}$)	($q_{1,1}$	¶1,d \
			at random			.
			\Rightarrow			:
\langle	× _{n,1}	× _{n,d})		¶_n,1	$q_{n,d}$

Loop

$$\begin{pmatrix} y_{\mathbf{1}} \\ \vdots \\ y_{n} \end{pmatrix} \xrightarrow{\text{logistic}} \left(\begin{array}{ccc} \mathfrak{q}_{\mathbf{1},\mathbf{1}} & \cdots & \mathfrak{q}_{\mathbf{1},d} \\ \vdots & \vdots & \vdots \\ \mathfrak{q}_{n,\mathbf{1}} & \cdots & \mathfrak{q}_{n,d} \end{array} \right) \xrightarrow{\text{polytomous}} \left(\begin{array}{ccc} x_{\mathbf{1},\mathbf{1}} & \cdots & x_{\mathbf{1},d} \\ \vdots & \vdots & \vdots \\ x_{n,\mathbf{1}} & \cdots & x_{n,d} \end{array} \right)$$

Updating q

$$\left(\begin{array}{c} p(y_{1}, \mathfrak{q}_{1,j} = k | \mathbf{x}_{i}) \\ \vdots \\ p(y_{n}, \mathfrak{q}_{n,j} = k | \mathbf{x}_{i}) \end{array}\right) \xrightarrow{\text{random}}_{\substack{\text{sampling} \\ \Rightarrow}} \left(\begin{array}{c} \mathfrak{q}_{1,j} \\ \vdots \\ \mathfrak{q}_{n,j} \end{array}\right)$$

Calculating q^{MAP}

$$\left(\begin{array}{c} \mathbf{q}^{\mathsf{MAP},\mathbf{1},j} \\ \vdots \\ \mathbf{q}^{\mathsf{MAP},n,j} \end{array} \right) \xrightarrow{\mathsf{MAP}} \left(\begin{array}{c} \operatorname{argmax}_{\mathbf{q}_{j}} p_{\mathbf{\alpha}_{j}}(\mathbf{q}_{j} | \mathbf{x}_{1,j}) \\ \operatorname{estimate} \\ = \end{array} \right) \xrightarrow{\mathsf{argmax}} \left(\begin{array}{c} \operatorname{argmax}_{\mathbf{q}_{j}} p_{\mathbf{\alpha}_{j}}(\mathbf{q}_{j} | \mathbf{x}_{n,j}) \\ \vdots \\ \operatorname{argmax}_{\mathbf{q}_{j}} p_{\mathbf{\alpha}_{j}}(\mathbf{q}_{j} | \mathbf{x}_{n,j}) \end{array} \right)$$