Feature quantization for parsimonious and interpretable predictive models

Adrien Ehrhardt

Christophe Biernacki Philippe Heinrich Vincent Vandewalle

Modal's Days 2019

24/01/2019

< D >

500

Context, basic notations, combinatorics of the problem

<□ ▶ < @ ▶ < \ > < \ > < \ > < \ 2/26

Supervised multivariate quantization: a relaxation

Results

Conclusion and future work

Context, basic notations, combinatorics of the problem

< □ ▶

500

3/26

Э

Home	Time in job	Family status	Wages		Repayment
Owner	20	Widower	2000		0
Renter	10	Common-law	1700		0
Starter	5	Divorced	4000		1
By work	8	Single	2700		1
Renter	12	Married	1400		0
By family	2		1200		0
	Home Owner Renter Starter By work Renter By family	HomeTime in jobOwner20Renter10Starter5By work8Renter12By family2	HomeTime in jobFamily statusOwner20WidowerRenter10Common-lawStarter5DivorcedBy work8SingleRenter12MarriedBy family2?	HomeTime in jobFamily statusWagesOwner20Widower2000Renter10Common-law1700Starter5Divorced4000By work8Single2700Renter12Married1400By family2?1200	HomeTime in jobFamily statusWagesOwner20Widower2000Renter10Common-law1700Starter5Divorced4000By work8Single2700Renter12Married1400By family2?1200

Table: Dataset with outliers and missing values.

E

4/26

Job	Home	Time in job	Family status	Wages	Repayment
Craftsman	Owner	20	Widower	2000	0
?	Renter	10	Common-law	1700	0
Licensed profes- sional	Starter	5	Divorced	4000	1
Executive	By work	8	Single	2700	1
Office employee	Renter	12	Married	1400	0
Worker	By family	2	?	1200	0

Table: Dataset with outliers and missing values.

< □ > < 同

うへで

4/26

Э

- 1. Feature selection
- 2. Discretization / grouping
- 3. Interaction screening
- 4. Logistic regression fitting

		Wages	Repayment
Craftsman	Widower	2000	0
		1700	0
	Divorced	4000	1
		2700	1
Office employee		1400	0
		1200	0

Table: Dataset with outliers and missing values.

< □ > < 同

- 1. Feature selection
- 2. Discretization / grouping
- 3. Interaction screening
- 4. Logistic regression fitting

Job	Family status	Wages	Repayment
Craftsman	Widower]1500;2000]	0
	Common-law]1500;2000]	0
Licensed profes- sional	Divorced]2000;∞[1
Executive	Single]2000;∞[1
Office employee	Married]-∞ ; 1500]	0
Worker]-∞ ; 1500]	0

Table: Dataset with outliers and missing values.

< □ > < 同

うへで

- 1. Feature selection
- 2. Discretization / grouping
- 3. Interaction screening
- 4. Logistic regression fitting

		Wages	Repayment
?+Low-qualified	?+Alone]1500;2000]	0
]1500;2000]	0
]2000;∞[1
]2000;∞[1
]- ∞ ; 1500]	0
]- ∞ ; 1500]	0

Table: Dataset with outliers and missing values.

< □ > < 同

- 1. Feature selection
- 2. Discretization / grouping
- 3. Interaction screening
- 4. Logistic regression fitting

Job		Family status x Wages	Repayment
?+Low-qualified		?+Alone ×]1500;2000]	0
?+Low-qualified		Union ×]1500;2000]	0
High-qualified		?+Alone ×]2000;∞[1
High-qualified		?+Alone x]2000;∞[1
?+Low-qualified		Union x]- ∞ ; 1500]	0
?+Low-qualified		?+Alone x]- ∞ ; 1500]	0

Table: Dataset with outliers and missing values.

< □ > < 同

- 1. Feature selection
- 2. Discretization / grouping
- 3. Interaction screening
- 4. Logistic regression fitting

Job		Family status × Wages		Repayment
?+Low-qualified		?+Alone ×]1500;2000]	225	0
?+Low-qualified		Union ×]1500;2000]		0
High-qualified		?+Alone x]2000; ∞ [1
High-qualified		?+Alone x]2000; ∞ [1
?+Low-qualified		Union x]- ∞ ; 1500]		0
?+Low-qualified		?+Alone x]- ∞ ; 1500]		0

Table: Dataset with outliers and missing values.

< □ > < 同

- 1. Feature selection
- 2. Discretization / grouping
- 3. Interaction screening
- 4. Logistic regression fitting

Feature	Level	Points
	18-25	10
Age	25-45	20
	45-+∞	30
	<i>−</i> ∞-1000	15
Wages	1000-2000	25
	2000-+∞	35

Table: Final scorecard.

< □ ▶

< A >

< ≣ ▶ <

≣ ► ≣

Notations I

Raw data

$$m{x} = (x_1, \dots, x_d)$$

 $x_j \in \mathbb{R}$ (continuous case)
 $x_j \in \{1, \dots, l_j\}$ (categorical case)
 $y \in \{0, 1\}$ (target)

Quantized data

$$egin{aligned} oldsymbol{q}(oldsymbol{x}) &= (oldsymbol{q}_1(x_1), \dots, oldsymbol{q}_d(x_d)) \ oldsymbol{q}_j(x_j) &= (oldsymbol{q}_{j,h}(x_j))_1^{m_j} \ (ext{one-hot encoding}) \ oldsymbol{q}_{j,h}(\cdot) &= 1 \ ext{if} \ x_j \in C_{j,h}, 0 \ ext{otherwise}, \ 1 \leq h \leq m_j \end{aligned}$$

<□ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ ∃ ■ ♡ < ♡ 6/26

Discretization

$$C_{j,h} = (c_{j,h-1}, c_{j,h}]$$

where $c_{j,1}, \ldots, c_{j,m_j-1}$ are increasing numbers called cutpoints, $c_{j,0} = -\infty$ and $c_{j,m_j} = +\infty$.

• □ ▶ • 一冊 ▶ •

Notations III

Grouping

$$\bigsqcup_{h=1}^{m_j} C_{j,h} = \{1,\ldots,l_j\}.$$

<□ ▶ < □ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ ⊇ り < ℃ 8/26

Embedding Feature Engineering in the predictive task

$$egin{aligned} \mathcal{X} & o \mathcal{Q} & o \mathcal{Y} \ \mathbf{x} &\mapsto \mathbf{q}(\mathbf{x}) \mapsto y \end{aligned}$$

$$(\mathbf{x},\mathbf{y})=(\mathbf{x}_i,y_i)_1^n$$

<□▶ <□▷ <□▷ < 三▷ < 三▷ < 三▷ < □</td>

True data

$$\operatorname{logit}(p_{\operatorname{true}}(1|\boldsymbol{x})) = \operatorname{ln}\left(\frac{p_{\operatorname{true}}(1|\boldsymbol{x})}{1 - p_{\operatorname{true}}(1|\boldsymbol{x})}\right) = \operatorname{sin}((x_1 - 0.7) \times 7)$$

Figure: True relationship between predictor and outcome

< □ >

4

 $\mathcal{O} \mathcal{Q} \mathcal{O}$

10/26

Э

Logistic regression on "raw" data:

 $\mathsf{logit}(p_{\theta_{\mathsf{raw}}}(1|\mathbf{x})) = \theta_0 + \frac{\theta_1 x_1}{\theta_1 x_1}$

Figure: Linear logistic regression fit

↓□ ▶ ↓ / / ● ▶ ↓

E

 $\mathfrak{I}\mathfrak{A}\mathfrak{C}$

Logistic regression on discretized data:

$$\operatorname{logit}(p_{\theta_{\boldsymbol{q}}}(1|\boldsymbol{q}(\boldsymbol{x}))) = \theta_0 + \underbrace{\theta_1' \cdot \boldsymbol{q}_1(\boldsymbol{x}_1)}_{\theta_1^1, \dots, \theta_1^{50}}$$

Figure: Bad (high variance) discretization

< □ >

4 E b

500

10/26

⊒

Logistic regression on discretized data:

$$\operatorname{logit}(p_{\theta_{\boldsymbol{q}}}(1|\boldsymbol{q}(\boldsymbol{x}))) = \theta_0 + \underbrace{\theta_1' \cdot \boldsymbol{q}_1(\boldsymbol{x}_1)}_{\theta_1^1, \dots, \theta_1^3}$$

Figure: Good (bias/variance tradeoff) discretization

Э

< □ > < 同 > < 三 >

500

Model selection

Logistic regression coefficient
$$\hat{\theta}_q$$
 given via MLE

$$\hat{\theta}_{\boldsymbol{q}} = \operatorname{argmax} \ell(\boldsymbol{ heta}_{\boldsymbol{q}}; (\mathbf{x}, \mathbf{y})) = \sum_{i=1}^{n} \ln p_{\boldsymbol{ heta}_{\boldsymbol{q}}}(y_i | \boldsymbol{q}(\boldsymbol{x}_i))$$

Best quantization \hat{q} given by *e.g.* BIC

$$\hat{oldsymbol{q}} = \mathop{\mathrm{argmin}}_{oldsymbol{q}\in\mathcal{Q}} \mathsf{BIC}(\widehat{oldsymbol{ heta}}_{oldsymbol{q}})$$

Obvious problem: Q is huge!

- d = 10 categorical features
- $I_j = 4$ levels each
- lacksquare $|\mathcal{Q}|pprox$ 6 \cdot 10¹¹

Supervised multivariate quantization: a relaxation

▲□▶ ▲□▶ ▲ ■▶ ▲ ■ ▶ ▲ ■ ♪ ♥ ■ ♪ ♥ ♥ 12/26

Smooth approximation of the quantization

$$oldsymbol{q}_{oldsymbol{lpha}_{j}}(\cdot) = ig(q_{oldsymbol{lpha}_{j,h}}(\cdot)ig)_{h=1}^{m_{j}} ext{ with } egin{cases} \sum_{h=1}^{m_{j}} q_{oldsymbol{lpha}_{j,h}}(\cdot) = 1, \ 0 \leq q_{oldsymbol{lpha}_{j,h}}(\cdot) \leq 1, \end{cases}$$

For continuous features, we set for $\alpha_{j,h} = (\alpha_{j,h}^0, \alpha_{j,h}^1) \in \mathbb{R}^2$

$$q_{\boldsymbol{\alpha}_{j,h}}(\cdot) = \frac{\exp(\alpha_{j,h}^{0} + \alpha_{j,h}^{1} \cdot)}{\sum_{g=1}^{m_{j}} \exp(\alpha_{j,g}^{0} + \alpha_{j,g}^{1} \cdot)}$$

For categorical features, we set for $\alpha_{j,h} = (\alpha_{j,h}(1), \dots, \alpha_{j,h}(l_j)) \in \mathbb{R}^{l_j}$

$$q_{\alpha_{j,h}}(\cdot) = \frac{\exp\left(\alpha_{j,h}(\cdot)\right)}{\sum_{g=1}^{m_j} \exp\left(\alpha_{j,g}(\cdot)\right)}$$

■ ● ■ のQで 13/26

Go back to "hard" thresholding: MAP estimation

Validity of the approach

$$\ell_{\boldsymbol{q}_{\alpha}}(\boldsymbol{ heta};(\mathbf{x},\mathbf{y})) = \sum_{i=1}^{n} \ln p_{\boldsymbol{ heta}}(y_i | \boldsymbol{q}_{\alpha}(\boldsymbol{x}_i))$$

 $q_{j,h}^{MAP}(x_j) = 1 ext{ if } h = rgmax_{1 \le h' \le m_j} q_{\hat{\alpha}_{j,h'}}, 0 ext{ otherwise.}$

- 1. MAP procedure yields contiguous intervals [Samé et al., 2011].
- 2. The α parameters can be written explicitly w.r.t. cutpoints [Chamroukhi et al., 2009].
- 3. Under classical regularity conditions and if the model is well-specified, maximizing $\ell_{\boldsymbol{q}_{\alpha}}(\boldsymbol{\theta}; (\mathbf{x}, \mathbf{y}))$ w.r.t. $(\boldsymbol{\alpha}, \boldsymbol{\theta})$ is equivalent to maximizing $\ell_{\boldsymbol{q}}(\boldsymbol{\theta}; (\mathbf{x}, \mathbf{y}))$ over $(\boldsymbol{q}, \boldsymbol{\theta})$ which was untractable.

Estimation via neural networks

Estimation via neural networks

<□ ▶ <□ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ▶ < ⊇ ♥ ♡ < ○ 17/26</p>

We have drastically restricted the search space to clever candidates $\boldsymbol{q}^{\text{MAP}(1)},\ldots,\boldsymbol{q}^{\text{MAP}(\text{iter})}$ resulting from the the gradient descent steps.

$$(\boldsymbol{q}^{\star}, \boldsymbol{\theta}^{\star}) = \operatorname{argmin}_{\hat{\boldsymbol{q}} \in \{\boldsymbol{q}^{\mathsf{MAP}(1)}, \dots, \boldsymbol{q}^{\mathsf{MAP}(\mathsf{tter})}\}, \boldsymbol{\theta} \in \Theta_{\boldsymbol{m}}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\hat{\boldsymbol{q}}})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

We have drastically restricted the search space to clever candidates $\boldsymbol{q}^{\text{MAP}(1)}, \ldots, \boldsymbol{q}^{\text{MAP}(\text{iter})}$ resulting from the the gradient descent steps.

$$(\boldsymbol{q}^{\star}, \boldsymbol{\theta}^{\star}) = \operatorname{argmin}_{\hat{\boldsymbol{q}} \in \{\boldsymbol{q}^{\mathsf{MAP}(1)}, \dots, \boldsymbol{q}^{\mathsf{MAP}(\mathsf{iter})}\}, \boldsymbol{\theta} \in \Theta_{m}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\hat{\boldsymbol{q}}})$$

▲□ ▶ ▲ □ ▶ ▲ 三 ▶ ▲ 三 ▶ ● ○ ○ 18/26

We would still need to loop over candidates m!

We have drastically restricted the search space to clever candidates $\boldsymbol{q}^{\text{MAP}(1)}, \ldots, \boldsymbol{q}^{\text{MAP}(\text{iter})}$ resulting from the the gradient descent steps.

$$(\boldsymbol{q}^{\star}, \boldsymbol{\theta}^{\star}) = \operatorname{argmin}_{\hat{\boldsymbol{q}} \in \{\boldsymbol{q}^{\mathsf{MAP}(1)}, \dots, \boldsymbol{q}^{\mathsf{MAP}(\mathsf{iter})}\}, \boldsymbol{\theta} \in \Theta_{m}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\hat{\boldsymbol{q}}})$$

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ 글 ∽ ९ ° 18/26

We would still need to loop over candidates m!

In practice if $\forall i, q_{\alpha_{j,h}}(x_j) \ll 1$, then level *h* disappears while performing the argmax.

We have drastically restricted the search space to clever candidates $\boldsymbol{q}^{\text{MAP}(1)}, \ldots, \boldsymbol{q}^{\text{MAP}(\text{iter})}$ resulting from the the gradient descent steps.

$$(\boldsymbol{q}^{\star}, \boldsymbol{\theta}^{\star}) = \operatorname{argmin}_{\boldsymbol{\hat{q}} \in \{\boldsymbol{q}^{\mathsf{MAP}(1)}, \dots, \boldsymbol{q}^{\mathsf{MAP}(\mathsf{iter})}\}, \boldsymbol{\theta} \in \Theta_{m}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\boldsymbol{\hat{q}}})$$

We would still need to loop over candidates m!

In practice if $\forall i, q_{\alpha_{j,h}}(x_j) \ll 1$, then level *h* disappears while performing the argmax.

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ 글 ∽ ९ ° 18/26

Start with $oldsymbol{m}=(m_{\max})_1^d$ and "wait" \dots

Results

▲□▶▲□▶▲壹▶▲壹▶ 壹 ∽੧<♡ 19/26

Table: For different sample sizes n, (A) Cl of $\hat{c}_{j,2}$ for $c_{j,2} = 2/3$. (B) Cl of \hat{m} for $m_1 = 3$. (C) Cl of \hat{m}_3 for $m_3 = 1$.

ク (20/26

E

Table: Gini indices (the greater the value, the better the performance) of our proposed quantization algorithm *glmdisc* and two baselines: ALLR and MDLP / χ^2 tests obtained on several benchmark datasets from the UCI library.

Dataset	ALLR	$MDLP/\chi^2$	glmdisc
Adult	81.4 (1.0)	85.3 (0.9)	80.4 (1.0)
Australian	72.1 (10.4)	84.1 (7.5)	92.5 (4.5)
Bands	48.3 (17.8)	47.3 (17.6)	58.5 (12.0)
Credit	81.3 (9.6)	88.7 (6.4)	92.0 (4.7)
German	52.0 (11.3)	54.6 (11.2)	69.2 (9.1)
Heart	80.3 (12.1)	78.7 (13.1)	86.3 (10.6)

Table: Gini indices (the greater the value, the better the performance) of our proposed quantization algorithm *glmdisc*, the two baselines of Table 4 and the current scorecard (manual / expert representation) obtained on several portfolios of Crédit Agricole Consumer Finance.

Portfolio	ALLR	Current	$MDLP/\chi^2$	glmdisc
Automobile	59.3 (3.1)	55.6 (3.4)	59.3 (3.0)	58.9 (2.6)
Renovation	52.3 (5.5)	50.9 (5.6)	54.0 (5.1)	56.7 (4.8)
Standard	39.7 (3.3)	37.1 (3.8)	45.3 (3.1)	43.8 (3.2)
Revolving	62.7 (2.8)	58.5 (3.2)	63.2 (2.8)	62.3 (2.8)
Mass retail	52.8 (5.3)	48.7 (6.0)	61.4 (4.7)	61.4 (4.6)
Electronics	52.9 (11.9)	55.8 (10.8)	56.3 (10.2)	72.6 (7.4)

Conclusion and future work

↓□ → ↓ □ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ □ → ↓ □ → ↓ □ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ □ → ↓

<□ → < @ → < 差 → < 差 → 差 の < ⁽⁾ 24/26

 Interpretability + good empirical results and statistical guarantees (to some extent...),

↓□ ▶ < @ ▶ < \overline \Lambda \L

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- ► Big gain for statisticians relying on logistic regression.

<□ ▶ < □ ▶ < □ ▶ < 三 ▶ < 三 ▶ 三 り < ℃ 24/26

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- ► Big gain for statisticians relying on logistic regression.
- ▶ Implementation in Python/TensorFlow/Keras to be released.

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- ► Big gain for statisticians relying on logistic regression.
- ► Implementation in Python/TensorFlow/Keras to be released.

Perspectives

• Tested for logistic regression: adaptable to other models p_{θ} !

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- ► Big gain for statisticians relying on logistic regression.
- ▶ Implementation in Python/TensorFlow/Keras to be released.

Perspectives

• Tested for logistic regression: adaptable to other models p_{θ} !

► To be compared with SEM approach:

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- ► Big gain for statisticians relying on logistic regression.
- ▶ Implementation in Python/TensorFlow/Keras to be released.

Perspectives

- Tested for logistic regression: adaptable to other models p_{θ} !
- To be compared with SEM approach:
 - R implementation of glmdisc available on Github, to be submitted to CRAN.

<□ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ ○ ♀ ♀ 24/26

- Interpretability + good empirical results and statistical guarantees (to some extent...),
- ► Big gain for statisticians relying on logistic regression.
- ▶ Implementation in Python/TensorFlow/Keras to be released.

Perspectives

- Tested for logistic regression: adaptable to other models p_{θ} !
- To be compared with SEM approach:
 - R implementation of glmdisc available on Github, to be submitted to CRAN.
 - Python implementation of glmdisc available on Github and PyPi.

Thanks!

↓□ → ↓ □ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ □ → ↓ □ → ↓ □ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ Ξ → ↓ □ → ↓

- Chamroukhi, F., Samé, A., Govaert, G., and Aknin, P. (2009). A regression model with a hidden logistic process for feature extraction from time series. In <u>Neural Networks, 2009. IJCNN 2009. International Joint</u> Conference on, pages 489–496. IEEE.
- Samé, A., Chamroukhi, F., Govaert, G., and Aknin, P. (2011).
 Model-based clustering and segmentation of time series with changes in regime.
 Advances in Data Analysis and Classification, 5(4):301–321.

<□ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ ○ ♀ ♀ 26/26