Model-based multivariate discretization for logistic regression

Adrien Ehrhardt $^{(1,4)}$, Christophe Biernacki $^{(1,2)}$, Vincent Vandewalle $^{(1,3)}$, Philippe Heinrich $^{(2)}$

 $^{(1)}$ Inria Lille Nord-Europe, Modal team ; $^{(2)}$ Université de Lille 1, Laboratoire Paul Painlevé ; $^{(3)}$ Université de Lille 2, EA 2694 ; $^{(4)}$ Crédit Agricole Consumer Finance

Motivation

Credit Scoring: estimating the probability of an applicant to a loan to default.

logistic regression of parameter θ

Modelers traditionally manually perform two pre-processing tasks:

- Discretization of continuous attributes,
- Grouping of values of qualitative attributes.

BUT WHY?

- Resulting model more understandable, allows to address subgroups,
- Increased predictive power.

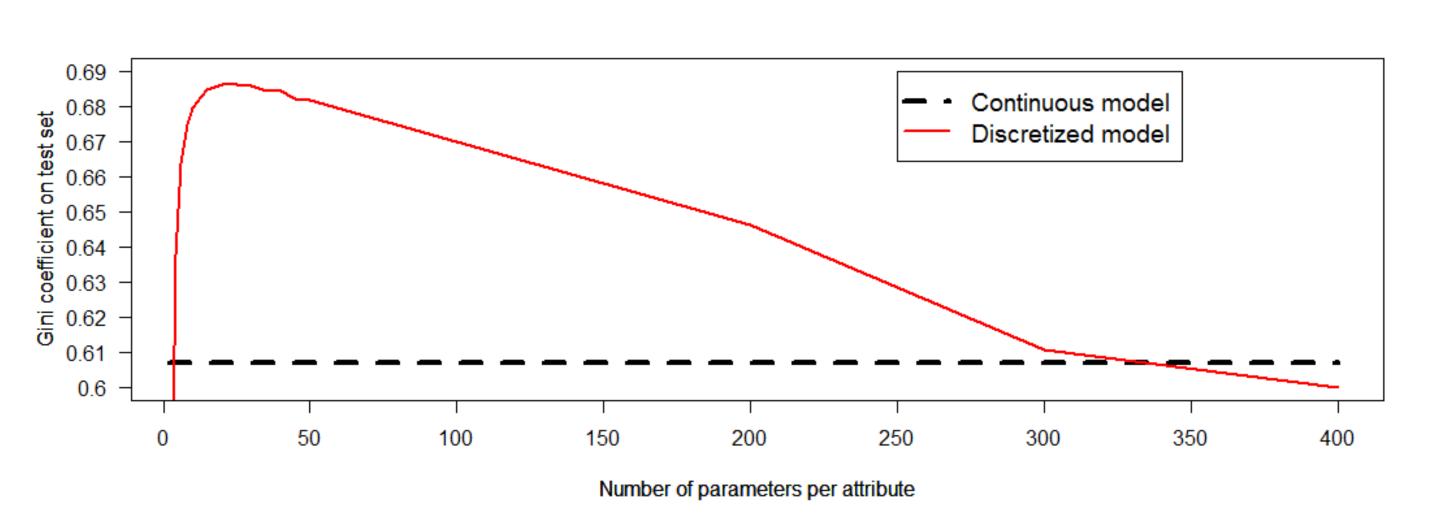


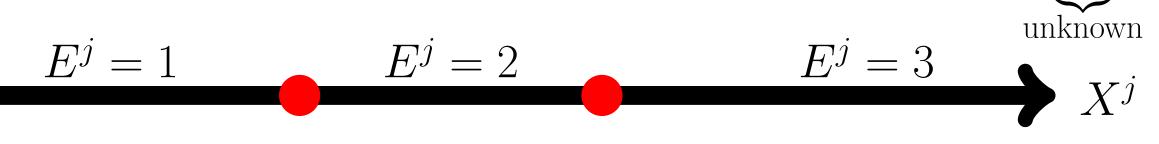
Figure 1: equal-freq discretization (same number of observations in each bin) with varying number of bins

Notations

Target variable: Y in $\{0; 1\}$ (good/bad clients).

Predictive attributes: $X = (X^j)_1^d$ where X^j is continuous or qualitative.

Discretized attributes: $E = (E^j)_1^d$ where $E \in \mathcal{E}$ and $E^j \in \{1, \ldots, m_j \}$.



SEM-Gibbs estimation

Idea: use an **SEM-algorithm** as $p(y, e|x) = p(y|e) \prod p(e^{j}|x^{j})$.

Trick: Gibbs-sampling from a multinomial model with parameters:

$$p(e^{j}|x,y,e^{\{-j\}}) \propto p(y|e;\theta)p(e^{j}|x^{j};\alpha_{j})$$

- Initialize e^j randomly in $\{1,\ldots,m_j^{(0)}\}$ $\{m_j^{(0)}\}$: user-def. max. number of intervals).
- Repeat until $i \leq \max_{i}$ iter (user-defined) and $\exists j \text{ s.t. } m_i^{(i)} > 1$:
- Adjust logistic regression $p(y|e;\theta) = \text{logit}^{-1}(\theta_0 + \sum_{j=1}^d \sum_{m=1}^{m_j} \theta_m^j 1_{\{e^j=m\}}).$
- 2 For all continuous attributes j, adjust multinomial logistic regressions $p(e^j|x^j;\alpha_j)$.
- 3 For all qualitative attributes j, calculate $p(e^j|x^j;\alpha_j)$ through the contingency table.
- 4 Use the expression above to draw $e^{(i)}$.
- Calculate the new candidate discretization $e_{\text{MAP}}^{(i)} = (\operatorname{argmax}_k p(E^j = k|x^j;\alpha_j))_1^d$.

Estimation performance on simulated data

More than 200 existing algorithms [1], among which *ChiMerge* [2] and *MDLP* [3].

• Estimation precision of cut-off values knowing m_i , Table 1a.

(a) 95% CI of estimated cut-off $(m_j \text{ known})$

- **2** Estimation precision of m_i , Table 1b.
- 3 Performance in presence of (hidden) interaction attributes, Table 1c.

n = 800	$S_1 = \frac{1}{3}$	$S_2 = \frac{2}{3}$		n = 1000	Mode
E^1	[0.331; 0.335]	[0.669; 0.671]		$m_1 = 3$	4
E^2	[0.332; 0.362]	[0.662; 0.667]		$m_2 = 3$	4
) 95% CI	of estimated cu	t-off (m_i knowr	(b)) Mode of e	stimated η

n = 1000	Our approach	ChiMerge	MDLP
Gini	[80;81.2]	[48.5;51.6]	[76.2;77.9]

(c) 95% CI on test set Gini (all models misspecified) Table 1: Different performance estimations using simulated data

Some intuition

Hint: The set \mathcal{E} of all possible discretizations is huge!

Implicit discretization hypothesis: E "squeezes" the info in X about Y:

$$\forall y, x, e, \ p(y|x, e) = p(y|e).$$

Using this hypothesis we have:

Continuous:

$$p(y|x) = \sum_{e \in \mathcal{E}} p(y|x,e)p(e|x) = \sum_{e \in \mathcal{E}} p(y|e) \underbrace{p(e|x)}_{\text{logistic}} \underbrace{p(e|x)}_{\text{to be defined}}.$$

As E is unknown, this problem is **too hard** for an EM-algorithm.

All discretization methods add hypotheses to simplify the problem.

Predictive performance on real data

3 portfolios: 3 different populations, products, . . . 3 different scorecards!

Total time spent on developing a scorecard: approx. 6 months, among which approx. 3 on attribute selection, discretization, grouping and modeling.

	Portfolio 1	Portfolio 2	Portfolio 3
Current performance	57,5	27	70
Our approach	58	30	71.3
ChiMerge	16,5	26,7	0
			$(\theta = 2000)$
MDLP	58	29,2	71.3

Table 2: Gini on test set of different discretized models on 3 portfolios

Optimized criterion

According to Figure 1 there is an optimal discretization; so we seek:

$$e^* = \underset{e \in \mathcal{E}}{\operatorname{argmax}} \operatorname{AIC}(\mathbf{m}_e),$$

Lots of candidates e: it is untractable to optimize this criterion on \mathcal{E} .

Idea: Generate "good" candidates and choose e^* among few candidates.

Conclusion

• Our approach is a **generic way** to discretize,

- 2 It shows good performance in the simulated misspecified model case,
- 3 It shows **comparable** results on real data, but it is faster and automatic,
- 4 Perspectives:
 - Automatic creation of **interaction terms**,
- Extension to **other model types** $p(e^{j}|x^{j};\alpha_{j})$.
- **6 Implementation available** in R, Python and soon in PySpark!

Statistical modeling

Hypothesis 1: conditionally to X, each r.v. E^j is assumed independent:

$$\forall j \neq k, E^j | x^j \perp E^k | x^k.$$

Hypothesis 2: each E^j is linked to X^j via multinomial logistic regression:

$$\forall j, e, x, \ p(e^j|x^j) = p(e^j|x^j; \alpha_j).$$

 \mathcal{E} is thus "reduced" to the multinomial logit family.

Problem: $(\alpha_i)_1^j$ cannot be estimated as $(E^j)_1^d$ are **latent variables**.

References

[1] Sergio Ramírez-Gallego, Salvador García, Héctor Mouriño-Talín, David Martínez-Rego, Verónica Bolón-Canedo, Amparo Alonso-Betanzos, José Manuel Benítez, and Francisco Herrera.

Data discretization: taxonomy and big data challenge.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(1):5–21, 2016.

[2] Randy Kerber.

Chimerge: Discretization of numeric attributes.

In Proceedings of the tenth national conference on Artificial intelligence, pages 123–128. Aaai Press, 1992.

[3] Usama M. Fayyad and Keki B. Irani.

Multi-interval discretization of continuous-valued attributes for classification learning.

In *IJCAI*, pages 1022–1029, 1993.

Try it out!

Contact Information

- R: github.com/adimajo/scoring
 - Python: ~/poster_discretization
- Web: adimajo.github.io • Email: adrien.ehrhardt@inria.fr