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Current practice

Job Home Time in
job

Family status Wages

Score

Repayment

Craftsman Owner 20 Widower 2000

225

0

? Renter 10 Common-law 1700

190

0

Licensed profes-
sional

Starter 5 Divorced 4000

218

1

Executive By work 8 Single 2700

202

1

Office employee Renter 12 Married 1400

205

0

Worker By family 2 ? 1200

192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Job Family status Wages

Score

Repayment

Craftsman Widower ]1500;2000]

225

0

? Common-law ]1500;2000]

190

0

Licensed profes-
sional

Divorced ]2000;∞[

218

1

Executive Single ]2000;∞[

202

1

Office employee Married ]-∞ ; 1500]

205

0

Worker ? ]-∞ ; 1500]

192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Job Family status Wages

Score

Repayment

?+Low-qualified ?+Alone ]1500;2000]

225

0

?+Low-qualified Union ]1500;2000]

190

0

High-qualified ?+Alone ]2000;∞[

218

1

High-qualified ?+Alone ]2000;∞[

202

1

?+Low-qualified Union ]-∞ ; 1500]

205

0

?+Low-qualified ?+Alone ]-∞ ; 1500]

192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Job Family status x Wages

Score

Repayment

?+Low-qualified ?+Alone x ]1500;2000]

225

0

?+Low-qualified Union x ]1500;2000]

190

0

High-qualified ?+Alone x ]2000;∞[

218

1

High-qualified ?+Alone x ]2000;∞[

202

1

?+Low-qualified Union x ]-∞ ; 1500]

205

0

?+Low-qualified ?+Alone x ]-∞ ; 1500]

192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Current practice

Job Family status x Wages
Score

Repayment

?+Low-qualified ?+Alone x ]1500;2000]
225

0
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190

0
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218

1

High-qualified ?+Alone x ]2000;∞[
202

1

?+Low-qualified Union x ]-∞ ; 1500]
205

0

?+Low-qualified ?+Alone x ]-∞ ; 1500]
192

0

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting
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Mathematical reinterpretation

The whole process can be decomposed into two steps:

X → E → Y
x 7→ e = f (x) 7→ y

Selected features: x = ((xj)
d1
1︸ ︷︷ ︸

∈R

, (xj)
d
d1+1︸ ︷︷ ︸

∈{1,...,oj}

).

f must be “simple” and “component-wise”, i.e. f = (fj)
d
1 .

We restrict to discretization and grouping of factor levels.
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Mathematical reinterpretation: Feature Engineering

xj
fj(xj) = 1 fj(xj) = 2 fj(xj) = 3

Discretization (1 ≤ j ≤ d1)

Into m intervals with associated cutpoints c = (c1, . . . , cm−1).

Discretization function

fj(·; c ,m) : R→{1, . . . ,m}

x 7→1]−∞;c1](x) +
m−2∑
k=1

(k + 1) 1]ck ;ck+1](x)

+m 1]cm−1,∞[(x)
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Mathematical reinterpretation: Feature Engineering

1 2

1 2 3 4 5

fj(xj) =

xj =

Grouping (d1 < j ≤ d)

Grouping o values into m, m ≤ o.

Grouping function

fj : {1, . . . , o} → {1, . . . ,m}
fj surjective: it defines a partition of {1, . . . , o} in m elements.
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Mathematical reinterpretation: Objective

Target feature y ∈ {0, 1} must be predicted given engineered
features f (x) = (fj(xj))

d
1 .

We restrict to binary logistic regression.

On “raw” data, logistic regression yields:

logit(pθraw(1|x)) = θ0 +

d1∑
j=1

θjxj +
d∑

j=d1+1

θ
xj
j

On discretized / grouped data, logistic regression yields:

logit(pθf (1|f (x))) = θ0 +
d∑

j=1

θ
fj (xj )
j
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Example

True data

logit(ptrue(1|x)) = ln

(
ptrue(1|x)

1− ptrue(1|x)

)
= sin((x1 − 0.7)× 7)

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

lo
gi
t(
p(
1|
x)
)

True distribution

Figure: True relationship between predictor and outcome
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Example

Logistic regression on “raw” data:

logit(pθraw(1|x)) = θ0 + θ1x1

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

lo
gi
t(
p(
1|
x)
)

True distribution
Linear logistic regression

Figure: Linear logistic regression fit
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Example

Logistic regression on discretized data:
If f is not carefully chosen . . .

logit(pθf (1|f (x))) = θ0 + θ
f1(x1)
1︸ ︷︷ ︸

θ11 ,...,θ
50
1

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

lo
gi
t(
p(
1|
x)
)

True distribution
Bad discretization

Figure: Bad (high variance) discretization
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Example

Logistic regression on discretized data:
If f is carefully chosen . . .

logit(pθf (1|f (x))) = θ0 + θ
f1(x1)
1︸ ︷︷ ︸

θ11 ,...,θ
3
1

0.0 0.2 0.4 0.6 0.8 1.0

-1
.0

-0
.5

0.
0

0.
5

1.
0

x

lo
gi
t(
p(
1|
x)
)

True distribution
Good discretization

Figure: Good (bias/variance tradeoff) discretization
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Criterion

θ can be estimated for each discretization f and f ? can be chosen
through our favorite model choice criterion: BIC, AIC, . . .

A model selection problem

(f ?,θ?) = argmax
f ∈F ,θ∈Θf

n∑
i=1

ln pθ(yi |f (x i ))− penalty(n;θ)

How to efficiently explore F?
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Exploring F

Example of discretization

“Functional” space F where f lives is continuous:

xj
fj(xj) = 1 fj(xj) = 2 fj(xj) = mj

However, for a fixed design x = (x i )
n
1 there is a countable

space F̃ in which fRg ⇔ ∀i , j , fj(xi ) = gj(xi )

(f ?,θ?) = argmax
f ∈F̃ ,θ∈Θf

n∑
i=1

ln pθ(yi |f (x i ))− penalty(n;θ)
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State-of-the art

Current academic methods:

A lot of existing heuristics, see [Ramírez-Gallego et al., 2016]:
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State-of-the art

Most of these methods are:

I Univariate,

I Test statistics more or less justified (χ2-based).
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Supervised multivariate discretization and factor
levels grouping
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Mathematical formalization

Discretized / grouped xj denoted by ej has been seen up to now as
the result of a function of xj :

ej = fj(xj).

Discretization / grouping ej can be seen as a latent random
variable for which

p(ej |xj) = 1ej (fj(xj))︸ ︷︷ ︸
Heaviside-like function
difficult to optimize

.

Suppose for now that m = (mj)
d
1 is fixed.

e ∈ Em = {1, . . . ,m1} × . . .× . . .× {1, . . . ,md}.
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Mathematical formalization

Model selection criterion
We want the “best” model pθ?(y |e?) where θ? is the maximum
likelihood estimator and e? is determined by AIC, BIC. . .

(e?,θ?) = argmax
e∈Em ,θ∈Θm

n∑
i=1

ln pθ(yi |e i )− penalty(n;θ)

Em is still too big, so there is a need for a “path” in Em.
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First set of hypotheses

H1: implicit hypothesis of every discretization:

Predictive information about y in x is “squeezed” in e, i.e.
ptrue(y |x , e) = ptrue(y |e).

H2: conditional independence:

Conditional independence of ej |xj with other features xk , k 6= j .

x1

xj

xd

e1

ej

ed

y

f1

fj

fd

Figure: Dependance structure between xj ,ej and y
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Proposal: continuous relaxation

H3: link between xj and ej :

Continuous relaxation of a discrete problem (cf neural nets)

Continuous features: relaxation of the “hard” discretization
Link between ej and xj is supposed to be polytomous logistic:

pαj (ej |xj).

Categorical features: relaxation of the grouping problem

A simple contingency table is used:

pαj (ej = k |xj = `) = αk,`
j .
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Intuitions about how it works: model proposal

p(y |x ,θ,α) =
∑

e∈Em

p(y |x , e)p(e|x)

=
∑

e∈Em

p(y |e)
d∏

j=1

p(ej |xj)

=
∑

e∈Em

pθe (y |e)︸ ︷︷ ︸
logistic

d∏
j=1

pαj (ej |xj)︸ ︷︷ ︸
logistic or table

≈ pθ?(y |e?)

Subsequently, it is equivalent to “optimize” p(y |x ,θ,α).

max
θ,e

pθ(y |e) ' max
θ,α

p(y |x ,θ,α)



19/34

Intuitions about how it works: model proposal

p(y |x ,θ,α) =
∑

e∈Em

p(y |x , e)p(e|x)

=
∑

e∈Em

p(y |e)
d∏

j=1

p(ej |xj)

=
∑

e∈Em

pθe (y |e)︸ ︷︷ ︸
logistic

d∏
j=1

pαj (ej |xj)︸ ︷︷ ︸
logistic or table

≈ pθ?(y |e?)

Subsequently, it is equivalent to “optimize” p(y |x ,θ,α).

max
θ,e

pθ(y |e) ' max
θ,α

p(y |x ,θ,α)



19/34

Intuitions about how it works: model proposal

p(y |x ,θ,α) =
∑

e∈Em

p(y |x , e)p(e|x)

=
∑

e∈Em

p(y |e)
d∏

j=1

p(ej |xj)

=
∑

e∈Em

pθe (y |e)︸ ︷︷ ︸
logistic

d∏
j=1

pαj (ej |xj)︸ ︷︷ ︸
logistic or table

≈ pθ?(y |e?)

Subsequently, it is equivalent to “optimize” p(y |x ,θ,α).

max
θ,e

pθ(y |e) ' max
θ,α

p(y |x ,θ,α)
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Intuitions about how it works: estimation

“Classical” estimation strategy with latent variables: EM algorithm.

There would still be a sum over Em:
p(y |x ,θ,α) =

∑
e∈Em

pθ(y |e)
∏d

j=1 pαj (ej |xj)

Use a Stochastic-EM! Draw e knowing that:

p(e|x , y) =
pθ(y |e)

∏d
j=1 pαj (ej |xj)∑

e∈Em
pθ(y |e)

∏d
j=1 pαj (ej |xj)︸ ︷︷ ︸

still difficult to calculate

Gibbs-sampling step:

p(ej |x , y , e{−j}) ∝ pθ(y |e)pαj (ej |xj)
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Algorithm

Initialization
x1,1 · · · x1,d

.

.

.
.
.
.

.

.

.
xn,1 · · · xn,d

 at random
⇒


e1,1 · · · e1,d

.

.

.
.
.
.

.

.

.
en,1 · · · en,d


Loop


y1

.

.

.
yn

 logistic
regression
⇒


e1,1 · · · e1,d

.

.

.
.
.
.

.

.

.
en,1 · · · en,d


polytomous
regression
⇒


x1,1 · · · x1,d

.

.

.
.
.
.

.

.

.
xn,1 · · · xn,d


Updating e

p(y1, e1,j = k|x i )

.

.

.
p(yn, en,j = k|x i )


random
sampling
⇒


e1,j

.

.

.
en,j


Calculating eMAP

eMAP,1,j

.

.

.
eMAP,n,j


MAP

estimate
=


argmaxej

pαj (ej |x1,j )

.

.

.
argmaxej

pαj (ej |xn,j )


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Go back to “hard” thresholding: MAP estimation

−0.7 1

eMAP,1 = 1 eMAP,1 = 2 eMAP,1 = 3

x1

p
(1
|x
1)

−0.7 1

eMAP,1 = 1 eMAP,1 = 2 eMAP,1 = 3

x1

p
(2
|x
1)

−0.7 1

eMAP,1 = 1 eMAP,1 = 2 eMAP,1 = 3

x1

p
(3
|x
1)
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In the end: the best discretization

New model selection criterion
We have drastically restricted the search space to provably clever
candidates e(1)

MAP, . . . , e
(iter)
MAP resulting from the Gibbs sampling and

MAP estimation.

(e?,θ?) = argmax
e∈{e(1)

MAP,...,e
(iter)
MAP},θ∈Θm

n∑
i=1

ln pθe (yi |e i )− penalty(n;θ)

We would still need to loop over candidates m!

In practice if ∀i , p(ei ,j = 1|xi ,j , yi )� 1, then ej = 1 disappears. . .

Start with m = (mmax)
d
1 and “wait” . . . eventually until m = 1.
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Interactions in logistic regression
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Notations

Upper triangular matrix with δk,` = 1 if k < ` and features p and q
“interact” in the logistic regression.

logit(pθf (1|f (x))) = θ0 +
d∑

j=1

θ
fj (xj )
j +

∑
1≤k<`≤d

δk,`θ
fk (xk )f`(x`)
k,`

Imagine for now that the discretization e = f (x) is fixed. The
criterion becomes:

(θ?, δ?) = argmax

θ,δ∈{0,1}
d(d−1)

2

n∑
i=1

ln pθ(yi |e i , δ)− penalty(n;θ)

Analogous to previous problem: 2
d(d−1)

2 models.
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Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings algorithm.

p(y |e) =
∑

δ∈{0,1}
d(d−1)

2

p(y |e, δ)p(δ)

p(δ|e, y) ∝ p(y |e, δ)���p(δ)

≈ exp(−BIC[δ]/2)���p(δ) p(δp,q) =
1
2

Which transition proposal q : ({0, 1}
d(d−1)

2 , {0, 1}
d(d−1)

2 ) 7→ [0; 1]?
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Model proposal

2d(d−1) probabilities to calculate. . .

We restrict changes to only one entry δk,`.

Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

Trick: alternate one discretization / grouping step and one
“interaction” step.
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Results: several datasets

Performance asserted on simulated data.
Good performance on real data:

Gini Current performance glmdisc Basic glm
Auto (n=50,000 ; d=15) 57.9 64.84 58

Revolving (n=48,000 ; d=9) 58.57 67.15 53.5
Prospects (n=5,000 ; d=25) 35.6 47.18 32.7
Electronics (n=140,000 ; d=8) 57.5 58 -10

Young (n=5,000 ; d=25) ≈ 15 30 12.2
Basel II (n=70,000 ; d=13) 70 71.3 19

Relatively fast computing time: between 2 hours and a day on a
laptop according to number of observations, features, . . .

“Inexisting” human time.
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Conclusion and future work
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Take-aways

Conclusion

I Reinterpretation as a latent variable problem,
I Resolution proposal relying on MCMC and “soft” discretization,
I Good empirical results and statistical guarantees (to some

extent...),
I R implementation of glmdisc available on Github, to be

submitted to CRAN,
I Python implementation of glmdisc available on Github and

PyPi,
I Big gain for statisticians in the field of Credit Scoring.

Perspectives

I Tested for logistic regression and polytomous logistic links:
can be adapted to other models pθ and pα!

I The same model can be estimated with shallow neural
networks.

https://github.com/adimajo/glmdisc/glmdisc
https://github.com/adimajo/glmdisc_python
https://pypi.org/project/glmdisc/
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Shallow neural nets as a substitute estimation procedure
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Shallow neural nets as a substitute estimation procedure

Input #1

Input #2

Input #3

σ

σ

σ

σ

σ

σ

σ Output

Hidden
layer

Input
layer

Output
layer

mj − 1 neurons
with sigmoid
activations
≈ pαj (ej |xj)
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Thanks!
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Interaction discovery: proposal

p(δk,` = 1|ek , e`, y) = g(BIC[δk,` = 1]− BIC[δk,` = 0])
≈ exp

( 1
2 (BIC[pθ(y |ek , e`, δk,` = 0)]− BIC[pθ(y |ek , e`, δk,` = 1)])

)
q(δ, δ′) = |δk,` − pk,`| for the unique couple (k , `) s.t. δ(s)

k,` 6= δ′k,`

α = min
(
1, p(δ′|e,y)

p(δ|e,y)
1−q(δ,δ′)
q(δ,δ′)

)
≈ min

(
1, exp

( 1
2 (BIC[pθ(y |e, δ)]− BIC[pθ(y |e, δ′)])

) 1−q(δ,δ′)
q(δ,δ′)

)
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