Supervised multivariate discretization and levels merging for logistic regression

Adrien Ehrhardt ${ }^{1,2}$

Christophe Biernacki² Philippe Heinrich ${ }^{3,4}$
Vincent Vandewalle ${ }^{2,3}$
${ }^{1}$ Crédit Agricole Consumer Finance
${ }^{2}$ Inria Lille - Nord-Europe
${ }^{3}$ Université de Lille
${ }^{4}$ CNRS

31/08/2018

Table of Contents

Context and basic notations

Supervised multivariate discretization and factor levels grouping

Interactions in logistic regression

Conclusion and future work

Context and basic notations

Current practice

Job	Home	Time in job	Family status	Wages		Repayment
Craftsman	Owner	20	Widower	2000	0	
$?$	Renter	10	Common-law	1700	0	
Licensed profes- sional	Starter	5	Divorced	4000	1	
Executive	By work	8	Single	2700	1	
Office employee	Renter	12	Married	1400	0	
Worker	By family	2	$?$	1200	0	

Table: Dataset with outliers and missing values.

Current practice

| Job | Home | Time in
 job | Family status | Wages | Repayment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Craftsman | Owner | 20 | Widower | 2000 | 0 |
| $?$ | Renter | 10 | Common-law | 1700 | 0 |
| Licensed profes-
 sional | Starter | 5 | Divorced | 4000 | 1 |
| Executive | By work | 8 | Single | 2700 | 1 |
| Office employee | Renter | 12 | Married | 1400 | 0 |
| Worker | By family | 2 | $?$ | 1200 | 0 |

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

| Job | | Family status | Wages | | Repayment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Craftsman | | | Widower | 2000 | 0 |
| $?$ | | Common-law | 1700 | | 0 |
| Licensed profes- | | | Divorced | 4000 | 1 |
| sional | | Single | 2700 | | 1 |
| Executive | | | Married | 1400 | 0 |
| Office employee | | | $?$ | 1200 | 0 |

Table: Dataset with outliers and missing values.

1. Feature selection

2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Current practice

Table: Dataset with outliers and missing values.

1. Feature selection
2. Discretization / grouping
3. Interaction screening
4. Logistic regression fitting

Mathematical reinterpretation

The whole process can be decomposed into two steps:

$$
\left.\begin{array}{rl}
\mathcal{X} & \rightarrow \mathcal{E} \\
\boldsymbol{x} & \mapsto \boldsymbol{e}=\boldsymbol{f}(\boldsymbol{x})
\end{array}\right) \mapsto y
$$

Mathematical reinterpretation

The whole process can be decomposed into two steps:

$$
\left.\begin{array}{rl}
\mathcal{X} & \rightarrow \mathcal{E} \\
\boldsymbol{x} & \mapsto \boldsymbol{e}=\boldsymbol{f}(\boldsymbol{x})
\end{array}\right) \mapsto y
$$

Selected features: $\boldsymbol{x}=(\underbrace{\left(x_{j}\right)_{1}^{d_{1}}}_{\in \mathbb{R}}, \underbrace{\left(x_{j}\right)_{d_{1}+1}^{d}}_{\in\left\{1, \ldots,,_{j}\right\}})$.

Mathematical reinterpretation

The whole process can be decomposed into two steps:

$$
\left.\begin{array}{rl}
\mathcal{X} & \rightarrow \mathcal{E} \\
\boldsymbol{x} & \mapsto \boldsymbol{e}=\boldsymbol{f}(\boldsymbol{x})
\end{array}\right) \mapsto y
$$

Selected features: $\boldsymbol{x}=(\underbrace{\left(x_{j}\right)_{1}^{d_{1}}}_{\in \mathbb{R}}, \underbrace{\left(x_{j}\right)_{d_{1}+1}^{d}}_{\in\left\{1, \ldots,,_{j}\right\}})$.
\boldsymbol{f} must be "simple" and "component-wise", i.e. $\boldsymbol{f}=\left(f_{j}\right)_{1}^{d}$.
We restrict to discretization and grouping of factor levels.

Mathematical reinterpretation: Feature Engineering

$$
f_{j}\left(x_{j}\right)=1 \quad \stackrel{f_{j}\left(x_{j}\right)=2}{ } \xrightarrow{f_{j}\left(x_{j}\right)=3} x_{j}
$$

Mathematical reinterpretation: Feature Engineering

$$
f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=3
$$

Discretization ($1 \leq j \leq d_{1}$)
Into m intervals with associated cutpoints $\boldsymbol{c}=\left(c_{1}, \ldots, c_{m-1}\right)$.

Discretization function

$$
\begin{aligned}
f_{j}(; \boldsymbol{c}, m): \mathbb{R} & \rightarrow\{1, \ldots, m\} \\
x & \mapsto \mathbb{1}_{]-\infty ; c_{1}\right]}(x)+\sum_{k=1}^{m-2}(k+1) \mathbb{1}_{]_{k} ; c_{k+1}\right]}(x) \\
& +m \mathbb{1}_{1 c_{m-1}, \infty[}(x)
\end{aligned}
$$

Mathematical reinterpretation: Feature Engineering

Mathematical reinterpretation: Feature Engineering

Grouping $\left(d_{1}<j \leq d\right)$
Grouping o values into $m, m \leq 0$.

Grouping function

$f_{j}:\{1, \ldots, o\} \rightarrow\{1, \ldots, m\}$
f_{j} surjective: it defines a partition of $\{1, \ldots, o\}$ in m elements.

Mathematical reinterpretation: Objective

Target feature $y \in\{0,1\}$ must be predicted given engineered features $\boldsymbol{f}(\boldsymbol{x})=\left(f_{j}\left(x_{j}\right)\right)_{1}^{d}$.

Mathematical reinterpretation: Objective

Target feature $y \in\{0,1\}$ must be predicted given engineered features $\boldsymbol{f}(\boldsymbol{x})=\left(f_{j}\left(x_{j}\right)\right)_{1}^{d}$.

We restrict to binary logistic regression.

Mathematical reinterpretation: Objective

Target feature $y \in\{0,1\}$ must be predicted given engineered features $\boldsymbol{f}(\boldsymbol{x})=\left(f_{j}\left(x_{j}\right)\right)_{1}^{d}$.

We restrict to binary logistic regression.
On "raw" data, logistic regression yields:

$$
\operatorname{logit}\left(p_{\theta_{\text {raw }}}(1 \mid x)\right)=\theta_{0}+\sum_{j=1}^{d_{1}} \theta_{j} x_{j}+\sum_{j=d_{1}+1}^{d} \theta_{j}^{x_{j}}
$$

Mathematical reinterpretation: Objective

Target feature $y \in\{0,1\}$ must be predicted given engineered features $\boldsymbol{f}(\boldsymbol{x})=\left(f_{j}\left(x_{j}\right)\right)_{1}^{d}$.

We restrict to binary logistic regression.
On "raw" data, logistic regression yields:

$$
\operatorname{logit}\left(p_{\theta_{\mathrm{raw}}}(1 \mid x)\right)=\theta_{0}+\sum_{j=1}^{d_{1}} \theta_{j} x_{j}+\sum_{j=d_{1}+1}^{d} \theta_{j}^{x_{j}}
$$

On discretized / grouped data, logistic regression yields:

$$
\operatorname{logit}\left(p_{\theta_{f}}(1 \mid \boldsymbol{f}(x))\right)=\theta_{0}+\sum_{j=1}^{d} \theta_{j}^{f_{j}\left(x_{j}\right)}
$$

Example

True data

$$
\operatorname{logit}\left(p_{\text {true }}(1 \mid x)\right)=\ln \left(\frac{p_{\text {true }}(1 \mid x)}{1-p_{\text {true }}(1 \mid x)}\right)=\sin \left(\left(x_{1}-0.7\right) \times 7\right)
$$

Figure: True relationship between predictor and outcome

Example

Logistic regression on "raw" data:

$$
\operatorname{logit}\left(p_{\theta_{\mathrm{raw}}}(1 \mid \boldsymbol{x})\right)=\theta_{0}+\theta_{1} x_{1}
$$

Figure: Linear logistic regression fit

Example

Logistic regression on discretized data:

If \boldsymbol{f} is not carefully chosen ...

$$
\operatorname{logit}\left(p_{\boldsymbol{\theta}_{\boldsymbol{f}}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\underbrace{\theta_{1}^{f_{1}\left(x_{1}\right)}}_{\theta_{1}^{1}, \ldots, \theta_{1}^{50}}
$$

Figure: Bad (high variance) discretization

Example

Logistic regression on discretized data:

If \boldsymbol{f} is carefully chosen ...

$$
\operatorname{logit}\left(p_{\theta_{f}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\underbrace{\theta_{1}^{f_{1}\left(x_{1}\right)}}_{\theta_{1}^{1}, \ldots, \theta_{1}}
$$

Figure: Good (bias/variance tradeoff) discretization

Criterion

$\boldsymbol{\theta}$ can be estimated for each discretization \boldsymbol{f} and \boldsymbol{f}^{\star} can be chosen through our favorite model choice criterion: BIC, AIC, ...

Criterion

$\boldsymbol{\theta}$ can be estimated for each discretization \boldsymbol{f} and \boldsymbol{f}^{\star} can be chosen through our favorite model choice criterion: BIC, AIC, ...

A model selection problem

$$
\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{f \in F_{,} \in \Theta}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{f}\left(\boldsymbol{x}_{i}\right)\right)-\operatorname{penalty}(n ; \boldsymbol{\theta})
$$

Criterion

$\boldsymbol{\theta}$ can be estimated for each discretization \boldsymbol{f} and \boldsymbol{f}^{\star} can be chosen through our favorite model choice criterion: BIC, AIC, ...

A model selection problem

$$
\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{f \in F_{, \boldsymbol{\theta} \in \Theta}}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{f}\left(\boldsymbol{x}_{i}\right)\right)-\operatorname{penalty}(n ; \boldsymbol{\theta})
$$

How to efficiently explore \mathcal{F} ?

Exploring \mathcal{F}

Example of discretization

"Functional" space \mathcal{F} where \boldsymbol{f} lives is continuous:

Exploring \mathcal{F}

Example of discretization

"Functional" space \mathcal{F} where \boldsymbol{f} lives is continuous:

$$
f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=m_{j}
$$

x_{j}

Exploring \mathcal{F}

Example of discretization

"Functional" space \mathcal{F} where \boldsymbol{f} lives is continuous:
$f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=m_{j} x_{j}$
However, for a fixed design $\mathrm{x}=\left(\mathrm{x}_{i}\right)_{1}^{n}$ there is a countable space $\tilde{\mathcal{F}}$ in which $\boldsymbol{f} \mathcal{R} \boldsymbol{g} \Leftrightarrow \forall i, j, f_{j}\left(x_{i}\right)=g_{j}\left(x_{i}\right)$

Exploring \mathcal{F}

Example of discretization
"Functional" space \mathcal{F} where \boldsymbol{f} lives is continuous:
$f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=m_{j} x_{j}$

However, for a fixed design $\mathrm{x}=\left(\mathrm{x}_{i}\right)_{1}^{n}$ there is a countable space $\tilde{\mathcal{F}}$ in which $\boldsymbol{f} \mathcal{R} \boldsymbol{g} \Leftrightarrow \forall i, j, f_{j}\left(x_{i}\right)=g_{j}\left(x_{i}\right)$

$$
f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2
$$

$$
x_{j}
$$

Exploring \mathcal{F}

Example of discretization
"Functional" space \mathcal{F} where \boldsymbol{f} lives is continuous:
$f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=m_{j} x_{j}$

However, for a fixed design $\mathrm{x}=\left(\mathrm{x}_{i}\right)_{1}^{n}$ there is a countable space $\tilde{\mathcal{F}}$ in which $\boldsymbol{f} \mathcal{R} \boldsymbol{g} \Leftrightarrow \forall i, j, f_{j}\left(x_{i}\right)=g_{j}\left(x_{i}\right)$

$$
g_{j}\left(x_{j}\right)=1 \quad g_{j}\left(x_{j}\right)=2
$$

$$
x_{j}
$$

Exploring \mathcal{F}

Example of discretization
"Functional" space \mathcal{F} where \boldsymbol{f} lives is continuous:
$f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=m_{j} x_{j}$

However, for a fixed design $\mathrm{x}=\left(\mathrm{x}_{i}\right)_{1}^{n}$ there is a countable space $\tilde{\mathcal{F}}$ in which $\boldsymbol{f} \mathcal{R} \boldsymbol{g} \Leftrightarrow \forall i, j, f_{j}\left(x_{i}\right)=g_{j}\left(x_{i}\right)$

$$
h_{j}\left(x_{j}\right)=1 \quad h_{j}\left(x_{j}\right)=2
$$

$$
x_{j}
$$

Exploring \mathcal{F}

Example of discretization
"Functional" space \mathcal{F} where \boldsymbol{f} lives is continuous:
$f_{j}\left(x_{j}\right)=1 \quad f_{j}\left(x_{j}\right)=2 \quad f_{j}\left(x_{j}\right)=m_{j} x_{j}$
However, for a fixed design $\mathrm{x}=\left(\mathrm{x}_{i}\right)_{1}^{n}$ there is a countable space $\tilde{\mathcal{F}}$ in which $\boldsymbol{f} \mathcal{R} \boldsymbol{g} \Leftrightarrow \forall i, j, f_{j}\left(x_{i}\right)=g_{j}\left(x_{i}\right)$

$$
\left(\boldsymbol{f}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{f \in \underset{F}{F}, \boldsymbol{\theta} \in \Theta_{f}}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{f}\left(\boldsymbol{x}_{i}\right)\right)-\operatorname{penalty}(n ; \boldsymbol{\theta})
$$

State-of-the art

Current academic methods:

A lot of existing heuristics, see [Ramírez-Gallego et al., 2016]:

State-of-the art

Most of these methods are:

- Univariate,

State-of-the art

Most of these methods are:

- Univariate,
- Test statistics more or less justified (χ^{2}-based).

Supervised multivariate discretization and factor levels grouping

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Discretization / grouping e_{j} can be seen as a latent random variable for which

$$
p\left(e_{j} \mid x_{j}\right)=\mathbb{1}_{e_{j}}\left(f_{j}\left(x_{j}\right)\right) .
$$

Mathematical formalization

Discretized／grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} ：

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Discretization／grouping e_{j} can be seen as a latent random variable for which

$$
p\left(e_{j} \mid x_{j}\right)=\underbrace{\mathbb{1}_{e_{j}}\left(f_{j}\left(x_{j}\right)\right)}_{\begin{array}{c}
\text { Heaviside-like function } \\
\text { difficult to optimize }
\end{array}} .
$$

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Discretization / grouping e_{j} can be seen as a latent random variable for which

$$
p\left(e_{j} \mid x_{j}\right)=\underbrace{\mathbb{1}_{e_{j}}\left(f_{j}\left(x_{j}\right)\right)}_{\begin{array}{c}
\text { Heaviside-like function } \\
\text { difficult to optimize }
\end{array}} .
$$

Suppose for now that $\boldsymbol{m}=\left(m_{j}\right)_{1}^{d}$ is fixed.

Mathematical formalization

Discretized / grouped x_{j} denoted by e_{j} has been seen up to now as the result of a function of x_{j} :

$$
e_{j}=f_{j}\left(x_{j}\right)
$$

Discretization / grouping e_{j} can be seen as a latent random variable for which

$$
p\left(e_{j} \mid x_{j}\right)=\underbrace{\mathbb{1}_{e_{j}}\left(f_{j}\left(x_{j}\right)\right)}_{\begin{array}{c}
\text { Heaviside-like function } \\
\text { difficult to optimize }
\end{array}} .
$$

Suppose for now that $\boldsymbol{m}=\left(m_{j}\right)_{1}^{d}$ is fixed.

$$
\boldsymbol{e} \in \boldsymbol{\mathcal { E }}_{\boldsymbol{m}}=\left\{1, \ldots, m_{1}\right\} \times \ldots \times \ldots \times\left\{1, \ldots, m_{d}\right\}
$$

Mathematical formalization

Model selection criterion

We want the "best" model $p_{\boldsymbol{\theta}^{\star}}\left(y \mid \boldsymbol{e}^{\star}\right)$ where $\boldsymbol{\theta}^{\star}$ is the maximum likelihood estimator and \boldsymbol{e}^{\star} is determined by AIC, BIC...

$$
\left(\boldsymbol{e}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{e \in \varepsilon_{m}, \boldsymbol{\theta} \in \Theta_{m}}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{e}_{i}\right)-\text { penalty }(n ; \boldsymbol{\theta})
$$

Mathematical formalization

Model selection criterion

We want the "best" model $p_{\boldsymbol{\theta}^{\star}}\left(y \mid \boldsymbol{e}^{\star}\right)$ where $\boldsymbol{\theta}^{\star}$ is the maximum likelihood estimator and \boldsymbol{e}^{\star} is determined by AIC, BIC...

$$
\left(\boldsymbol{e}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{e \in \varepsilon_{m}, \boldsymbol{\theta} \in \Theta_{m}}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{e}_{i}\right)-\text { penalty }(n ; \boldsymbol{\theta})
$$

$\mathcal{E}_{\boldsymbol{m}}$ is still too big, so there is a need for a "path" in $\mathcal{E}_{\boldsymbol{m}}$.

First set of hypotheses

H1: implicit hypothesis of every discretization:
Predictive information about \boldsymbol{y} in \boldsymbol{x} is "squeezed" in \boldsymbol{e}, i.e. $p_{\text {true }}(y \mid \boldsymbol{x}, \boldsymbol{e})=p_{\text {true }}(y \mid \boldsymbol{e})$.

First set of hypotheses

H1: implicit hypothesis of every discretization:
Predictive information about \boldsymbol{y} in \boldsymbol{x} is "squeezed" in \boldsymbol{e}, i.e. $p_{\text {true }}(y \mid \boldsymbol{x}, \boldsymbol{e})=p_{\text {true }}(y \mid \boldsymbol{e})$.

H2: conditional independence:
Conditional independence of $e_{j} \mid x_{j}$ with other features $x_{k}, k \neq j$.

First set of hypotheses

H1: implicit hypothesis of every discretization:
Predictive information about \boldsymbol{y} in \boldsymbol{x} is "squeezed" in \boldsymbol{e}, i.e. $p_{\text {true }}(y \mid \boldsymbol{x}, \boldsymbol{e})=p_{\text {true }}(y \mid \boldsymbol{e})$.

H2: conditional independence:
Conditional independence of $e_{j} \mid x_{j}$ with other features $x_{k}, k \neq j$.

Figure: Dependance structure between x_{j}, e_{j} and y

Proposal: continuous relaxation

H3: link between x_{j} and e_{j} :

Proposal: continuous relaxation

H3: link between x_{j} and e_{j} :
Continuous relaxation of a discrete problem (cf neural nets)

Continuous features: relaxation of the "hard" discretization

Link between e_{j} and x_{j} is supposed to be polytomous logistic:

$$
p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right) .
$$

Proposal: continuous relaxation

H3: link between x_{j} and e_{j} :
Continuous relaxation of a discrete problem (cf neural nets)

Continuous features: relaxation of the "hard" discretization

Link between e_{j} and x_{j} is supposed to be polytomous logistic:

$$
p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right) .
$$

Categorical features: relaxation of the grouping problem
A simple contingency table is used:

$$
p_{\alpha_{j}}\left(e_{j}=k \mid x_{j}=\ell\right)=\alpha_{j}^{k, \ell} .
$$

Intuitions about how it works: model proposal

$$
\begin{aligned}
p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha}) & =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid \boldsymbol{x}, \boldsymbol{e}) p(\boldsymbol{e} \mid \boldsymbol{x}) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p\left(e_{j} \mid x_{j}\right) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} \underbrace{p_{\theta_{\boldsymbol{e}}}(y \mid \boldsymbol{e})}_{\text {logistic }} \prod_{j=1}^{d} \underbrace{p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}_{\text {logistic or table }} \\
& \approx p_{\boldsymbol{\theta}^{\star}}\left(y \mid \boldsymbol{e}^{\star}\right)
\end{aligned}
$$

Intuitions about how it works: model proposal

$$
\begin{aligned}
p(y \mid x, \theta, \alpha) & =\sum_{\boldsymbol{e} \in \mathcal{E}_{\boldsymbol{m}}} p(y \mid x, \boldsymbol{e}) p(\boldsymbol{e} \mid x) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p\left(e_{j} \mid x_{j}\right) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} \underbrace{p_{\theta_{e}}(y \mid \boldsymbol{e})}_{\log \text { istic }} \prod_{j=1}^{d} \underbrace{p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}_{\text {logistic or table }} \\
& \approx p_{\boldsymbol{\theta}^{\star}}\left(y \mid \boldsymbol{e}^{\star}\right)
\end{aligned}
$$

Subsequently, it is equivalent to "optimize" $p(y \mid x, \boldsymbol{\theta}, \boldsymbol{\alpha})$.

Intuitions about how it works: model proposal

$$
\begin{aligned}
p(y \mid x, \theta, \alpha) & =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid x, \boldsymbol{e}) p(\boldsymbol{e} \mid x) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p\left(e_{j} \mid x_{j}\right) \\
& =\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} \underbrace{p_{\theta_{e}}(y \mid \boldsymbol{e})}_{\text {logistic }} \prod_{j=1}^{d} \underbrace{p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}_{\text {logistic or table }} \\
& \approx p_{\boldsymbol{\theta}^{\star}}\left(y \mid \mathbf{e}^{\star}\right)
\end{aligned}
$$

Subsequently, it is equivalent to "optimize" $p(y \mid x, \boldsymbol{\theta}, \boldsymbol{\alpha})$.

$$
\max _{\theta, e} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \simeq \max _{\boldsymbol{\theta}, \boldsymbol{\alpha}} p(y \mid x, \boldsymbol{\theta}, \alpha)
$$

Intuitions about how it works：estimation

＂Classical＂estimation strategy with latent variables：EM algorithm．

Intuitions about how it works: estimation

"Classical" estimation strategy with latent variables: EM algorithm.
There would still be a sum over \mathcal{E}_{m} : $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha})=\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)$

Intuitions about how it works: estimation

"Classical" estimation strategy with latent variables: EM algorithm.
There would still be a sum over \mathcal{E}_{m} : $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha})=\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)$

Use a Stochastic-EM! Draw e knowing that:

Intuitions about how it works: estimation

"Classical" estimation strategy with latent variables: EM algorithm.
There would still be a sum over $\mathcal{E}_{\boldsymbol{m}}$: $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha})=\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\theta}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)$

Use a Stochastic-EM! Draw e knowing that:

$$
p(\boldsymbol{e} \mid \boldsymbol{x}, y)=\underbrace{\frac{p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}{\sum_{\boldsymbol{e} \in \mathcal{E}_{\boldsymbol{m}}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}}_{\text {still difficult to calculate }}
$$

Intuitions about how it works: estimation

"Classical" estimation strategy with latent variables: EM algorithm.
There would still be a sum over $\mathcal{E}_{\boldsymbol{m}}$: $p(y \mid \boldsymbol{x}, \boldsymbol{\theta}, \boldsymbol{\alpha})=\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\boldsymbol{\theta}}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)$

Use a Stochastic-EM! Draw e knowing that:

$$
p(\boldsymbol{e} \mid \boldsymbol{x}, y)=\underbrace{\frac{p_{\theta}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}{\sum_{\boldsymbol{e} \in \mathcal{E}_{m}} p_{\theta}(y \mid \boldsymbol{e}) \prod_{j=1}^{d} p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)}}_{\text {still difficult to calculate }}
$$

Gibbs-sampling step:

$$
p\left(e_{j} \mid \boldsymbol{x}, y, \boldsymbol{e}_{\{-j\}}\right) \propto p_{\theta}(y \mid \boldsymbol{e}) p_{\alpha_{j}}\left(e_{j} \mid x_{j}\right)
$$

Algorithm

Initialization

$$
\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \vdots & \vdots \\
x_{n, \mathbf{1}} & \cdots & x_{n, d}
\end{array}\right) \stackrel{\text { at random }}{\Rightarrow}\left(\begin{array}{ccc}
e_{\mathbf{1}, \mathbf{1}} & \cdots & e_{1, d} \\
\vdots & \vdots & \vdots \\
e_{n, \mathbf{1}} & \cdots & e_{n, d}
\end{array}\right)
$$

Loop

$$
\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right) \underset{\substack{\text { logistic } \\
\text { regression }}}{\Rightarrow}\left(\begin{array}{ccc}
e_{1,1} & \cdots & e_{1, d} \\
\vdots & \vdots & \vdots \\
e_{n, 1} & \cdots & e_{n, d}
\end{array}\right) \underset{\substack{\text { polytomous } \\
\text { regression }}}{\Rightarrow}\left(\begin{array}{ccc}
x_{1,1} & \cdots & x_{1, d} \\
\vdots & \vdots & \vdots \\
x_{n, \mathbf{1}} & \cdots & x_{n, d}
\end{array}\right)
$$

Updating e

$$
\left(\begin{array}{c}
p\left(y_{\mathbf{1}}, e_{\mathbf{1}, j}=k \mid x_{i}\right) \\
\vdots \\
p\left(y_{n}, e_{n, j}=k \mid x_{i}\right)
\end{array}\right) \underset{\substack{\text { random } \\
\text { sampling }}}{\Rightarrow}\left(\begin{array}{c}
e_{\mathbf{1}, j} \\
\vdots \\
e_{n, j}
\end{array}\right)
$$

Calculating $e_{\text {MAP }}$

$$
\left(\begin{array}{c}
e_{\mathbf{M A P}, \mathbf{1}, j} \\
\vdots \\
e_{\mathbf{M A P}, n, j}
\end{array}\right) \stackrel{\text { MAP }}{\text { estimate }}=\left(\begin{array}{c}
\operatorname{argmax}_{e_{j}} p_{\alpha_{j}}\left(e_{j} \mid x_{\mathbf{1}, j}\right) \\
\vdots \\
\operatorname{argmax}_{e_{j}} p_{\alpha_{j}}\left(e_{j} \mid x_{n, j}\right)
\end{array}\right)
$$

Go back to "hard" thresholding: MAP estimation

$$
\begin{aligned}
& \frac{\stackrel{\rightharpoonup}{x}}{\stackrel{-}{\square}} \\
& x_{1}
\end{aligned}
$$

$$
x_{1}
$$

In the end: the best discretization

New model selection criterion

We have drastically restricted the search space to provably clever candidates $\boldsymbol{e}_{\text {MAP }}^{(1)}, \ldots, \boldsymbol{e}_{\text {MAP }}^{(\text {iter })}$ resulting from the Gibbs sampling and MAP estimation.

In the end: the best discretization

New model selection criterion

We have drastically restricted the search space to provably clever candidates $\boldsymbol{e}_{\text {MAP }}^{(1)}, \ldots, \boldsymbol{e}_{\text {MAP }}^{(\text {iter })}$ resulting from the Gibbs sampling and MAP estimation.

$$
\left(\boldsymbol{e}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{\operatorname{e} \in\left\{e_{\mathrm{MAP}}^{(1)}\right)}{\operatorname{argmax}} \sum_{\mathrm{MAP}}^{n} \ln p_{\boldsymbol{\theta}_{\boldsymbol{e}}}\left(y_{i} \mid \boldsymbol{e}_{i}\right)-\operatorname{\theta enalty}(n ; \boldsymbol{\theta})
$$

We would still need to loop over candidates \boldsymbol{m} !

In the end: the best discretization

New model selection criterion

We have drastically restricted the search space to provably clever candidates $\boldsymbol{e}_{\text {MAP }}^{(1)}, \ldots, \boldsymbol{e}_{\text {MAP }}^{(\text {iter })}$ resulting from the Gibbs sampling and MAP estimation.

$$
\left.\left(\boldsymbol{e}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{\operatorname{e} \in\left\{e_{\mathrm{MAP}}^{(1)}\right.}{\operatorname{argmax}} \sum_{\mathrm{MAP}}^{(\mathrm{iter})}\right\}, \boldsymbol{\theta} \in \Theta_{m} \ln p_{\boldsymbol{\theta}_{\boldsymbol{e}}}\left(y_{i} \mid \boldsymbol{e}_{i}\right)-\operatorname{penalty}(n ; \boldsymbol{\theta})
$$

We would still need to loop over candidates \boldsymbol{m} ! In practice if $\forall i, p\left(e_{i, j}=1 \mid x_{i, j}, y_{i}\right) \ll 1$, then $e_{j}=1$ disappears. . .

In the end: the best discretization

New model selection criterion

We have drastically restricted the search space to provably clever candidates $\boldsymbol{e}_{\text {MAP }}^{(1)}, \ldots, \boldsymbol{e}_{\text {MAP }}^{(\text {iter })}$ resulting from the Gibbs sampling and MAP estimation.

$$
\left(\boldsymbol{e}^{\star}, \boldsymbol{\theta}^{\star}\right)=\underset{\operatorname{e} \in\left\{\varepsilon_{\mathrm{MAP}}^{(\mathrm{I}}\right)}{\operatorname{argmax}} \sum_{\mathrm{MAP}}^{n} \ln p_{\boldsymbol{\theta}_{\boldsymbol{e}}}\left(y_{i} \mid \boldsymbol{e}_{i}\right)-\boldsymbol{\theta} \in \Theta_{m} \operatorname{penalty}(n ; \boldsymbol{\theta})
$$

We would still need to loop over candidates \boldsymbol{m} ! In practice if $\forall i, p\left(e_{i, j}=1 \mid x_{i, j}, y_{i}\right) \ll 1$, then $e_{j}=1$ disappears...
Start with $\boldsymbol{m}=\left(m_{\max }\right)_{1}^{d}$ and "wait" \ldots eventually until $\boldsymbol{m}=1$.

Interactions in logistic regression

Notations

Upper triangular matrix with $\delta_{k, \ell}=1$ if $k<\ell$ and features p and q "interact" in the logistic regression.

$$
\operatorname{logit}\left(p_{\boldsymbol{\theta}_{\boldsymbol{f}}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\sum_{j=1}^{d} \theta_{j}^{f_{j}\left(x_{j}\right)}+\sum_{1 \leq k<\ell \leq d} \delta_{k, \ell} \theta_{k, \ell}^{f_{k}\left(x_{k}\right) f_{\ell}\left(x_{\ell}\right)}
$$

Notations

Upper triangular matrix with $\delta_{k, \ell}=1$ if $k<\ell$ and features p and q "interact" in the logistic regression.

$$
\operatorname{logit}\left(p_{\boldsymbol{\theta}_{\boldsymbol{f}}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\sum_{j=1}^{d} \theta_{j}^{f_{j}\left(x_{j}\right)}+\sum_{1 \leq k<\ell \leq d} \delta_{k, \ell} \theta_{k, \ell}^{f_{k}\left(x_{k}\right) f_{\ell}\left(x_{\ell}\right)}
$$

Imagine for now that the discretization $\boldsymbol{e}=\boldsymbol{f}(\boldsymbol{x})$ is fixed. The criterion becomes:

$$
\left(\boldsymbol{\theta}^{\star}, \boldsymbol{\delta}^{\star}\right)=\underset{\boldsymbol{\theta}, \delta \in\{0,1\}^{\left.\frac{d(d-1)}{2}\right)}}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{e}_{i}, \delta\right)-\operatorname{penalty}(n ; \boldsymbol{\theta})
$$

Notations

Upper triangular matrix with $\delta_{k, \ell}=1$ if $k<\ell$ and features p and q "interact" in the logistic regression.

$$
\operatorname{logit}\left(p_{\theta_{\boldsymbol{f}}}(1 \mid \boldsymbol{f}(\boldsymbol{x}))\right)=\theta_{0}+\sum_{j=1}^{d} \theta_{j}^{f_{j}\left(x_{j}\right)}+\sum_{1 \leq k<\ell \leq d} \delta_{k, \ell} \theta_{k, \ell}^{f_{k}\left(x_{k}\right) f_{\ell}\left(x_{\ell}\right)}
$$

Imagine for now that the discretization $\boldsymbol{e}=\boldsymbol{f}(\boldsymbol{x})$ is fixed. The criterion becomes:

$$
\left(\boldsymbol{\theta}^{\star}, \boldsymbol{\delta}^{\star}\right)=\underset{\boldsymbol{\theta}, \delta \in\{0,1\}^{\left.\frac{d(d-1)}{2}\right)}}{\operatorname{argmax}} \sum_{i=1}^{n} \ln p_{\boldsymbol{\theta}}\left(y_{i} \mid \boldsymbol{e}_{i}, \delta\right)-\operatorname{penalty}(n ; \boldsymbol{\theta})
$$

Analogous to previous problem: $2^{\frac{d(d-1)}{2}}$ models.

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!
Strategy used here: Metropolis-Hastings algorithm.

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!
Strategy used here: Metropolis-Hastings algorithm.

$$
\begin{aligned}
p(y \mid \boldsymbol{e}) & =\sum_{\delta \in\{0,1\}^{\frac{d(d-1)}{2}}} p(y \mid \boldsymbol{e}, \boldsymbol{\delta}) p(\boldsymbol{\delta}) \\
p(\boldsymbol{\delta} \mid \boldsymbol{e}, y) & \propto p(y \mid \boldsymbol{e}, \boldsymbol{\delta}) p(\boldsymbol{\delta}) \\
& \approx \exp (-\operatorname{BIC}[\boldsymbol{\delta}] / 2) p(\boldsymbol{\delta})
\end{aligned}
$$

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!
Strategy used here: Metropolis-Hastings algorithm.

$$
\begin{aligned}
p(y \mid \boldsymbol{e}) & =\sum_{\delta \in\{0,1\}^{\frac{d(d-1)}{2}}} p(y \mid \boldsymbol{e}, \delta) p(\delta) \\
p(\delta \mid \boldsymbol{e}, y) & \propto p(y \mid \boldsymbol{e}, \delta) p(\delta) \\
& \approx \exp (-\operatorname{BIC}[\delta] / 2) p(\delta) \quad p\left(\delta_{p, q}\right)=\frac{1}{2}
\end{aligned}
$$

Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!
Strategy used here: Metropolis-Hastings algorithm.

$$
\begin{aligned}
p(y \mid \boldsymbol{e}) & =\sum_{\delta \in\{0,1\}^{\frac{d(d-1)}{2}}} p(y \mid \boldsymbol{e}, \delta) p(\delta) \\
p(\delta \mid \boldsymbol{e}, y) & \propto p(y \mid \boldsymbol{e}, \delta) p(\delta) \\
& \approx \exp (-\mathrm{BIC}[\delta] / 2) p(\delta) \quad p\left(\delta_{p, q}\right)=\frac{1}{2}
\end{aligned}
$$

Which transition proposal $q:\left(\{0,1\}^{\frac{d(d-1)}{2}},\{0,1\}^{\frac{d(d-1)}{2}}\right) \mapsto[0 ; 1]$?

Model proposal

$2^{d(d-1)}$ probabilities to calculate...

Model proposal

$2^{d(d-1)}$ probabilities to calculate...
We restrict changes to only one entry $\delta_{k, \ell}$.

Model proposal

$2^{d(d-1)}$ probabilities to calculate...
We restrict changes to only one entry $\delta_{k, \ell}$.
Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

Model proposal

$2^{d(d-1)}$ probabilities to calculate...
We restrict changes to only one entry $\delta_{k, \ell}$.
Proposal: gain/loss in BIC between bivariate models with / without the interaction.

Trick: alternate one discretization / grouping step and one "interaction" step.

Results: several datasets

Performance asserted on simulated data.
Good performance on real data:

Gini	Current performance	glmdisc	Basic glm
Auto $(\mathrm{n}=50,000 ; \mathrm{d}=15)$	57.9	64.84	58
Revolving $(\mathrm{n}=48,000 ; \mathrm{d}=9)$	58.57	67.15	53.5
Prospects $(\mathrm{n}=5,000 ; \mathrm{d}=25)$	35.6	47.18	32.7
Electronics $(\mathrm{n}=140,000 ; \mathrm{d}=8)$	57.5	58	-10
Young $(\mathrm{n}=5,000 ; \mathrm{d}=25)$	≈ 15	30	12.2
Basel II $(\mathrm{n}=70,000 ; \mathrm{d}=13)$	70	71.3	19

Relatively fast computing time: between 2 hours and a day on a laptop according to number of observations, features, ...
"Inexisting" human time.

Conclusion and future work

Take-aways

Conclusion

Take-aways

Conclusion

- Reinterpretation as a latent variable problem,

Take－aways

Conclusion

－Reinterpretation as a latent variable problem，
－Resolution proposal relying on MCMC and＂soft＂discretization，

Take－aways

Conclusion

－Reinterpretation as a latent variable problem，
－Resolution proposal relying on MCMC and＂soft＂discretization，
－Good empirical results and statistical guarantees（to some extent．．．），

Take-aways

Conclusion

- Reinterpretation as a latent variable problem,
- Resolution proposal relying on MCMC and "soft" discretization,
- Good empirical results and statistical guarantees (to some extent...),
- R implementation of gImdisc available on Github, to be submitted to CRAN,

Take-aways

Conclusion

- Reinterpretation as a latent variable problem,
- Resolution proposal relying on MCMC and "soft" discretization,
- Good empirical results and statistical guarantees (to some extent...),
- R implementation of gImdisc available on Github, to be submitted to CRAN,
- Python implementation of gImdisc available on Github and PyPi,

Take-aways

Conclusion

- Reinterpretation as a latent variable problem,
- Resolution proposal relying on MCMC and "soft" discretization,
- Good empirical results and statistical guarantees (to some extent...),
- R implementation of gImdisc available on Github, to be submitted to CRAN,
- Python implementation of gImdisc available on Github and PyPi,
- Big gain for statisticians in the field of Credit Scoring.

Take－aways

Conclusion

－Reinterpretation as a latent variable problem，
－Resolution proposal relying on MCMC and＂soft＂discretization，
－Good empirical results and statistical guarantees（to some extent．．．），
－R implementation of gImdisc available on Github，to be submitted to CRAN，
－Python implementation of gImdisc available on Github and PyPi，
－Big gain for statisticians in the field of Credit Scoring．

Perspectives

Take-aways

Conclusion

- Reinterpretation as a latent variable problem,
- Resolution proposal relying on MCMC and "soft" discretization,
- Good empirical results and statistical guarantees (to some extent...),
- R implementation of gImdisc available on Github, to be submitted to CRAN,
- Python implementation of gImdisc available on Github and PyPi,
- Big gain for statisticians in the field of Credit Scoring.

Perspectives

- Tested for logistic regression and polytomous logistic links: can be adapted to other models p_{θ} and p_{α} !

Take-aways

Conclusion

- Reinterpretation as a latent variable problem,
- Resolution proposal relying on MCMC and "soft" discretization,
- Good empirical results and statistical guarantees (to some extent...),
- R implementation of gImdisc available on Github, to be submitted to CRAN,
- Python implementation of gImdisc available on Github and PyPi,
- Big gain for statisticians in the field of Credit Scoring.

Perspectives

- Tested for logistic regression and polytomous logistic links: can be adapted to other models p_{θ} and p_{α} !
- The same model can be estimated with shallow neural networks.

Shallow neural nets as a substitute estimation procedure

Shallow neural nets as a substitute estimation procedure

Thanks!

References I

E Ramírez-Gallego, S., García, S., Mouriño-Talín, H., Martínez-Rego, D., Bolón-Canedo, V., Alonso-Betanzos, A., Benítez, J. M., and Herrera, F. (2016).
Data discretization: taxonomy and big data challenge. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 6(1):5-21.

Interaction discovery：proposal

$$
\begin{aligned}
& p\left(\delta_{k, \ell}=1 \mid e_{k}, e_{\ell, y}\right)=g\left(\operatorname{BIC}\left[\delta_{k, \ell}=1\right]-\operatorname{BIC}\left[\delta_{k, \ell}=0\right]\right) \\
& \approx \exp \left(\frac{1}{2}\left(\operatorname{BIC}\left[p_{\theta}\left(y \mid e_{k}, e_{\ell}, \delta_{k, \ell}=0\right)\right]-\operatorname{BIC}\left[p_{\theta}\left(y \mid e_{k}, e_{\ell}, \delta_{k, \ell}=1\right)\right]\right)\right) \\
& q\left(\delta, \delta^{\prime}\right)=\left|\delta_{k, \ell}-p_{k, \ell}\right| \text { for the unique couple }(k, \ell) \text { st. } \delta_{k, \ell}^{(s)} \neq \delta_{k, \ell}^{\prime} \\
& \alpha=\min \left(1, \frac{p\left(\delta^{\prime} \mid e, y\right)}{p(\delta \mid e, y)} \frac{1-q\left(\delta, \delta^{\prime}\right)}{q\left(\delta, \delta^{\prime}\right)}\right) \\
& \approx \min \left(1, \exp \left(\frac{1}{2}\left(\operatorname{BIC}\left[p_{\theta}(y \mid e, \delta)\right]-\operatorname{BIC}\left[p_{\theta}\left(y \mid e, \delta^{\prime}\right)\right]\right)\right) \frac{1-q\left(\delta, \delta^{\prime}\right)}{q\left(\delta, \delta^{\prime}\right)}\right)
\end{aligned}
$$

