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Context and notations: Industrial setting

Job Home Time in
job

Family status Wages

Score

Repayment

Craftsman Owner 20 Widower 2000

225

0

? Renter 10 Common-law 1700

190

1

Licensed profes-
sional

Starter 5 Divorced 4000

218

0

Executive By work 8 Single 2700

202

1

Office employee Renter 12 Married 1400

NA

NA

Worker By family 2 ? 1200

NA

NA

Table: Dataset with outliers and missing values.

1. Discarding rejected applicants
2. Feature selection
3. Discretization / grouping
4. Interaction screening
5. Segmentation
6. Logistic regression fitting
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Context and notations: Industrial setting
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Context and notations: Industrial setting
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Context and notations: Industrial setting
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Job Family status x Wages
Score

Repayment

?+Low-qualified ?+Alone x ]1500;2000]
225

0

?+Low-qualified Union x ]1500;2000]
190

1

High-qualified ?+Alone x ]2000;∞[
218

0

High-qualified ?+Alone x ]2000;∞[
202

1

((((
(

Office employee ���Renter �12 ���Married ��1400 NA
NA

���Worker ���By family �2 �? ��1200 NA
NA

Table: Dataset with outliers and missing values.

1. Discarding rejected applicants
2. Feature selection
3. Discretization / grouping
4. Interaction screening
5. Segmentation
6. Logistic regression fitting



5/59

Context and notations: Available data

Random variables: X ,Y ,Z

Observations:
x = (x1, . . . , xd): characteristics.
xj ∈ R or {1, . . . , lj}: e.g. rent amount, job, . . .
y ∈ {0, 1}: good or bad.
z ∈ {f, nf}: financed or not financed.

True distribution of good and bad clients: p(y |x)
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Context and notations: Available data

Need for a computable model that resembles p, often in the form
of a parametric model pθ(y |x), which we can calculate for a new
client.

Example: logistic regression

ln
pθ(1|x)

(1− pθ(1|x))
= x ′θ

There is θ? that makes pθ? “close” to p.

θ? = argminθ EX [KL(p||pθ)] =
∫
X
∑

y∈{0,1} p(y |x) ln
p(y |x)

pθ(y |x)
.

Well-specified model assumption

EX [KL(p||pθ?)] = 0,
pθ?(y |x) = p(y |x).
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Context and notations: Available data

Spa
ce Θ

θ
?

p(y |x)

Model bias
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Context and notations: Available data

p is unknown: access to an i.i.d. n + n′-sample
T = (x i , yi , zi )

n+n′

1 ∼ p.

We can deduce from the KL divergence the (log-)likelihood:

`(θ; T ) =
n+n′∑
i=1

ln pθ(yi |x i ).

The MLE θ̂ = argmaxθ `(θ; T ) is a good approximation of θ?.

Unfortunately, θ̂ is not directly computable (no closed form
solution).

θ̃ = Newton-Raphson(`(θ; T )) 6= θ̂.
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Context and notations: Available data

Spa
ce Θ

θ
?

θ̂

Bia
s an

d vari
anc

e

of e
stim

atio
n

Com
p.

prec
isio

n

p(y |x)

Model bias

All of this is “hidden” in your favourite statistical language /
package / library but is essential to understanding Reject Inference.
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Context and notations: Feature / model selection

Up to now, we assumed a parameter space Θ fixed.

Comparing models = different parameter spaces Θ1,Θ2, . . .
Corresponding to feature subsets, different discretizations,
interactions, . . . since we don’t know which parameter space is
closest to the “truth” p.

Model selection tools

θ̂best = argmin
θ̂k∈Θk

BIC(θ̂k) = −2`(θ̂k , T ) + dim(Θk) ln n.

BIC has nice statistical properties (consistency) but can be
swapped in the entire presentation with your favourite model
selection tool like Gini on T test.
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Reject Inference
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Reject Inference: Industrial setting

Figure: Simplified Acceptance
mechanism in Crédit Agricole
Consumer Finance Figure: Proportion of “final” lending

decisions for CACF France
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Reject Inference: Industrial setting

The observed data are the following:

T =

Tf =

(
xf

∪

Tnf =

(
xnf

x1,1 · · · x1,d
...

...
...

xn,1 · · · xn,d
xn+1,1 · · · xn+1,d
...

...
...

xn+n′,1 · · · xn+n′,d

yf

ynf

y1
...
yn
NA
...

NA

zf

znf

f
...
f
nf
...
nf

)
.

)
.

We traditionally build a logistic regression using only financed
clients (fixed parameter space Θ):

θ̂f = argmax
θ

`(θ; Tf),

which asymptotically approximates:

θ?f = argmin
θ

EX [KL(p||pθ)|Z = f].



14/59

Reject Inference: Industrial setting

We wish we had:
θ̂ = argmax

θ
`(θ; x, y),

which asymptotically approximates:

θ? = argmin
θ

EX [KL(p||pθ)].

But we lack ynf.

Mode
l sp

ace
Θ

θ?f

θ?

θ̂

θ̂ fEst
ima

tion

bias
+va

rian
ce

Est
ima

tion

bias
+va

rian
ce

p(y |x)

Model bias
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Reject Inference: What is at stake?

Estimators :
1. “Oracle”:

√
n + n′(θ̂ − θ?)

L−−−−−→
n,n′→∞

Nd+1(0,Σθ?)

2. Current methodology:
√
n(θ̂f − θ?f )

L−−−→
n→∞

Nd+1(0,Σf,θ?f
)

Question 1 : asymptotics of the estimators

(Q1) θ? ?
= θ?f

(Q2) Σθ?
?
= Σf,θ?f
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Reject Inference: Missingness mechanism

I MAR : ∀ x , y , z , p(z |x , y) = p(z |x)
→ Acceptance is determined by an old score: Z = 1{θ′X>cut}.

I MNAR : ∃ x , y , z , p(z |x , y) 6= p(z |x)
→ Operators’ “feeling” X̃ influence the acceptance.
→ Expert rules based on features X̃ not in X .

Y X

X̃

Z

Figure: Dependencies between random variables Y , X̃ , X and Z
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Reject Inference: Model specification

I Well-specified model : p(y |x) = pθ?(y |x).
→ With real data ⇒ hypothesis unlikely to be true.

I Misspecified model : θ? is the “best” in the Θ family.
→ Logistic regression commonly used for its robustness to
misspecification (no assumption about p(x)).

pθ(y |x)
p(z |x , y)

MAR MNAR

Well specified θ?f = θ?

Σf,θ?
f
6= Σθ? θ?f 6= θ?

Misspecified θ?f 6= θ? Σf,θ?
f
6= Σθ?

Σf,θ?
f
6= Σθ?

Table: (Q1) and (Q2) w.r.t. model specification and missingness
mechanism
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Reject Inference: How to use xnf?

Question 2: How to construct a better estimator than θ̂f?

Scope for action:
I Use xnf.

Remember that T OOT also comes from p(y |x , f) such that
applying a Reject Inference method and getting a higher Gini is no
guarantee that it would on the Through-the-Door population (on
the contrary!).
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Reject Inference: How to use xnf?

For logistic regression, Reject Inference methods amount to:

T (1)
c =

xf

xnf

x1,1 · · · x1,d
...

...
...

xn,1 · · · xn,d
xn+1,1 · · · xn+1,d

...
...

...
xn+n′,1 · · · xn+n′,d

,

yf

ynf

y1
...
yn

ŷ
(1)
n+1
...

ŷ
(1)
n+n′

,

zf

znf

f
...
f
nf
...
nf

.
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Reject Inference: How to use xnf?

Reclassification1 :

(θ̂CEM, ŷnf) = argmax
θ,ynf

`(θ; T (1)
c ) where ŷi = argmax

yi
pθ̂f(yi |x i ).

Problem: inconsistent estimator.

1[4, 1, 2]
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Reject Inference: How to use xnf?

Augmentation2: MAR / misspecified model.

`Aug(θ; Tf) =
n∑

i=1

1
p(f|x i )

ln(pθ(yi |x i )).

Problem: estimation of p(f|xi ) + assumes p(f|xi ) > 0 (clearly not
true).

Parcelling 3:

`(θ; x , yf, ŷnf) where ŷi =

{
1 w.p. αipθ̂f(1|x i , f)

0 w.p. 1− αipθ̂f(1|x i , f)
.

Problem: MNAR assumptions hidden in ŷnf (αi ) impossible to test.
2[4, 1, 2, 3]
3[4, 1, 2]
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Reject Inference: Additional remarks

All this stands for logistic regression and all “local” methods [5].

All “global” methods (explicit or implicit modelling of p(x)) will
produce biased estimates under MAR.

We might have:

Gini Logistic regression Decision trees
Financed 40 45
Through-the-door 40 35
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Feature quantization
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Feature quantization: By an example
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Some more notations I

Raw data
x = (x1, . . . , xd)

xj ∈ R (continuous case)
xj ∈ {1, . . . , lj} (categorical case)
y ∈ {0, 1} (target)

Quantized data
q(x) = (q1(x1), . . . ,qd(xd))

q j(xj) = (qj ,h(xj))
mj

1 (one-hot encoding)

qj ,h(·) = 1 if xj ∈ Cj ,h, 0 otherwise, 1 ≤ h ≤ mj
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Some more notations II

Discretization

Cj ,h = (cj ,h−1, cj ,h]

where cj ,1, . . . , cj ,mj−1 are increasing numbers called cutpoints,
cj ,0 = −∞ and cj ,mj

= +∞.

xj
cj ,1 cj ,2

(1, 0, 0) (0, 1, 0) (0, 0, 1)
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Some more notations III

Grouping
mj⊔
h=1

Cj ,h = {1, . . . , lj}.

(1, 0) (0, 1)

1 2 3 4 5

q j(xj) =

xj =
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Feature quantization: Existing approaches

You maximize an ad hoc criterion:

q̂ = argmax
q

CRIT(Tf),

and hope that it’s aligned with your original goal:

θ̂q̂ = argmax
θq̂

`(θq̂ ; Tf).
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Feature quantization: Approximation

qαj
(·) =

(
qαj,h

(·)
)mj

h=1 with

{∑mj

h=1 qαj,h
(·) = 1,

0 ≤ qαj,h
(·) ≤ 1,

For continuous features, we set for αj ,h = (α0j ,h, α
1
j ,h) ∈ R2

qαj,h
(·) =

exp(α0j ,h + α1j ,h·)∑mj

g=1 exp(α0j ,g + α1j ,g ·)
.

For categorical features, we set for
αj ,h = (αj ,h(1), . . . , αj ,h(lj)) ∈ Rlj

qαj,h
(·) =

exp (αj ,h(·))∑mj

g=1 exp (αj ,g (·))
.
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Feature quantization: Estimation MAP

qMAP
j ,h (xj) = 1 if h = argmax

1≤h′≤mj

qα̂j,h′ , 0 otherwise.

q̂j ,1(xj) = 1 q̂j ,1(xj) = 0 q̂j ,1(xj) = 0

ĉj ,1 ĉj ,2
xj

q
α̂

j,
1
(x

j)

q̂j ,2(xj) = 0 q̂j ,2(xj) = 1 q̂j ,2(xj) = 0

ĉj ,1 ĉj ,2

xj

q
α̂

j,
2
(x

j)

q̂j ,3(xj) = 0 q̂j ,3(xj) = 0 q̂j ,3(xj) = 1

ĉj ,1 ĉj ,2

xj

q
α̂

j,
3
(x

j)
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Feature quantization: Neural networks

We wish to maximize the following likelihood:

(θ̂, α̂) = argmax
θ,α

`(θ,α; x , y) =
n∑

i=1

pθ(yi |qα(x i )).

If there is a true quantization q?, then α? = limn→∞ α̂ is such
that qα? = q?.

If not, qMAP is “guaranteed” to be a good candidate quantization.

Problem: `(θ,α; x , y) cannot be directly maximized (it’s not even
convex).

Solution: Resort to gradient descent (not guaranteed to converge
to a global maximum!).
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Feature quantization: Neural networks

Continuous input #1

Level #1

Level #2

Level #3

Soft

Soft

Soft

Soft

σ Output

Hidden
layer

Input
layer

Output
layer

Softmax outputs
are qαj

(xj).



33/59

Estimation via neural networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8
1 q0,1 q0,2 q0,3

x1

q
α
0,
h

Continuous feature 0 at iteration 5

qα0,0
qα0,1
qα0,2
c0,1
c0,2
ĉ0,2

(a) Quantization q̂(s)
1 (x1) resulting from the MAP at iter t = 5 and mmax = 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2
0.4
0.6
0.8
1 q0,1 q0,2 q0,3

x1

q
α
0,
h

Continuous feature 0 at iteration 300

qα0,0
qα0,1
qα0,2
c0,1
c0,2
ĉ0,2
ĉ0,3

(b) Quantizations q̂(s)
1 (x1) resulting from the MAP at iter t = 300 and

mmax = 3.

Figure: Quantizations q̂(s)
1 (x1) of experiment (a) resulting from the

thresholding (??).
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Feature quantization: Model = quantization selection

New model selection criterion
We have drastically restricted the search space to clever candidates
qMAP(1), . . . ,qMAP(iter) resulting from the the gradient descent
steps.

(q?,θ?) = argmin
q̂∈{qMAP(1),...,qMAP(iter)},θ∈Θm

BIC(θ̂q̂)

We would still need to loop over candidates m!

In practice if ∀i , qαj,h
(xj)� 1, then level h disappears while

performing the argmax.

Start with m = (mmax)d1 and “wait” . . .
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Feature quantization: SEM-Gibbs

Originally (and as implemented in the R package glmdisc), the
optimization was a bit different:

I q is considered a latent (unobserved) feature;
I A classical EM algorithm is intractable since it requires an

Expectation step over all possible quantizations;
I Solution: random draw ≈ Bayesian statistics;
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SEM-Gibbs: estimation

“Classical” estimation strategy with latent variables: EM algorithm.

There would still be a sum over Qm:
p(y |x ,θ,α) =

∑
q∈Qm

pθ(y |q)
∏d

j=1 pαj (q j |xj)

Use a Stochastic-EM! Draw q knowing that:

p(q|x , y) =
pθ(y |q)

∏d
j=1 pαj (q j |xj)∑

q∈Qm
pθ(y |q)

∏d
j=1 pαj (q j |xj)︸ ︷︷ ︸

still difficult to calculate

Gibbs-sampling step:

p(q j |x , y ,q{−j}) ∝ pθ(y |q)pαj (q j |xj)
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SEM-Gibbs: algorithm

Initialization
x1,1 · · · x1,d

.

.

.
.
.
.

.

.

.
xn,1 · · · xn,d

 at random
⇒


q1,1 · · · q1,d

.

.

.
.
.
.

.

.

.
qn,1 · · · qn,d


Loop


y1

.

.

.
yn

 logistic
regression
⇒


q1,1 · · · q1,d

.

.

.
.
.
.

.

.

.
qn,1 · · · qn,d


polytomous
regression
⇒


x1,1 · · · x1,d

.

.

.
.
.
.

.

.

.
xn,1 · · · xn,d


Updating q

p(y1, q1,j = k|x i )

.

.

.
p(yn, qn,j = k|x i )


random
sampling
⇒


q1,j

.

.

.
qn,j


Calculating qMAP


qMAP,1,j

.

.

.
qMAP,n,j


MAP

estimate
=


argmaxqj

pαj (qj |x1,j )

.

.

.
argmaxqj

pαj (qj |xn,j )





38/59

Feature quantization: Results

Simulated data

Table: For different sample sizes n, (A) CI of ĉj,2 for cj,2 = 2/3. (B) CI
of m̂ for m1 = 3. (C) CI of m̂3 for m3 = 1.

n (A) ĉj ,2 (B) m̂1 (C) m̂3

1,000 [0.656, 0.666]
1

90

9

60

32

8

10,000 [0.666, 0.666]
0

100

0

88

12

0
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Feature quantization: Results

UCI data

Table: Gini indices (the greater the value, the better the performance) of
our proposed quantization algorithm glmdisc and two baselines: ALLR
and MDLP / χ2 tests obtained on several benchmark datasets from the
UCI library.

Dataset ALLR MDLP/χ2 glmdisc
Adult 81.4 (1.0) 85.3 (0.9) 80.4 (1.0)
Australian 72.1 (10.4) 84.1 (7.5) 92.5 (4.5)
Bands 48.3 (17.8) 47.3 (17.6) 58.5 (12.0)
Credit 81.3 (9.6) 88.7 (6.4) 92.0 (4.7)
German 52.0 (11.3) 54.6 (11.2) 69.2 (9.1)
Heart 80.3 (12.1) 78.7 (13.1) 86.3 (10.6)
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Feature quantization: Results

CACF data

Table: Gini indices (the greater the value, the better the performance) of
our proposed quantization algorithm glmdisc, the two baselines of
Table 4 and the current scorecard (manual / expert representation)
obtained on several portfolios of Crédit Agricole Consumer Finance.

Portfolio ALLR Current MDLP/χ2 glmdisc
Automobile 59.3 (3.1) 55.6 (3.4) 59.3 (3.0) 58.9 (2.6)
Renovation 52.3 (5.5) 50.9 (5.6) 54.0 (5.1) 56.7 (4.8)
Standard 39.7 (3.3) 37.1 (3.8) 45.3 (3.1) 44.0 (3.1)
Revolving 62.7 (2.8) 58.5 (3.2) 63.2 (2.8) 62.3 (2.8)
Mass retail 52.8 (5.3) 48.7 (6.0) 61.4 (4.7) 61.8 (4.6)
Electronics 52.9 (11.9) 55.8 (10.8) 56.3 (10.2) 72.6 (7.4)

See this gist for χ2 automated grouping tests.

https://gist.github.com/adimajo/eb007492007d650091f6bd7cb2047493
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Bivariate interactions
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Bivariate interactions: Notations

Upper triangular matrix with δk,` = 1 if k < ` and features p and q
“interact” in the logistic regression.

logit(pθf (1|q(x))) = θ0 +
d∑

j=1

θ
q j (xj )

j +
∑

1≤k<`≤d
δk,`θ

qk (xk )f`(x`)
k,`

Imagine for now that the discretization q(x) is fixed. The criterion
becomes:

(θ?, δ?) = argmax

θ,δ∈{0,1}
d(d−1)

2

n∑
i=1

ln pθ(yi |q(x i ), δ)− penalty(n;θ)

Analogous to previous problem: 2
d(d−1)

2 models.



42/59

Bivariate interactions: Notations

Upper triangular matrix with δk,` = 1 if k < ` and features p and q
“interact” in the logistic regression.

logit(pθf (1|q(x))) = θ0 +
d∑

j=1

θ
q j (xj )

j +
∑

1≤k<`≤d
δk,`θ

qk (xk )f`(x`)
k,`

Imagine for now that the discretization q(x) is fixed. The criterion
becomes:

(θ?, δ?) = argmax

θ,δ∈{0,1}
d(d−1)

2

n∑
i=1

ln pθ(yi |q(x i ), δ)− penalty(n;θ)

Analogous to previous problem: 2
d(d−1)

2 models.



42/59

Bivariate interactions: Notations

Upper triangular matrix with δk,` = 1 if k < ` and features p and q
“interact” in the logistic regression.

logit(pθf (1|q(x))) = θ0 +
d∑

j=1

θ
q j (xj )

j +
∑

1≤k<`≤d
δk,`θ

qk (xk )f`(x`)
k,`

Imagine for now that the discretization q(x) is fixed. The criterion
becomes:

(θ?, δ?) = argmax

θ,δ∈{0,1}
d(d−1)

2

n∑
i=1

ln pθ(yi |q(x i ), δ)− penalty(n;θ)

Analogous to previous problem: 2
d(d−1)

2 models.



43/59

Bivariate interactions: Model proposal

δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm.
Idea: Propose “clever” interactions and accept / reject them based
on the BIC criterion of the resulting logistic regression.

p(y |q) =
∑

δ∈{0,1}
d(d−1)

2

p(y |q, δ)p(δ)

p(δ|q, y) ∝ exp(−BIC[δ]/2)��
�p(δ) p(δp,q) =

1
2

Which transition proposal q : ({0, 1}
d(d−1)

2 , {0, 1}
d(d−1)

2 ) 7→ [0; 1]?
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Bivariate interactions: Model proposal

2d(d−1) probabilities to calculate. . .

We restrict changes to only one entry δk,`.

Proposal: gain/loss in BIC between bivariate models with /
without the interaction.

If the interaction between two features is meaningful when only
these two features are considered, there is a (provably) good
chance that it will be in the full multivariate model.

Trick: alternate one discretization / grouping step and one
“interaction” step.
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Bivariate interactions: Results

Données UCI

Table: Gini indices (the greater the value, the better the performance) of
our proposed quantization algorithm glmdisc and two baselines: ALLR
and MDLP / χ2 tests obtained on several benchmark datasets from the
UCI library.

Dataset ALLR ad hoc methods Our proposal:
glmdisc-NN

Our proposal:
glmdisc-SEM

glmdisc-SEM
w. interactions

Adult 81.4 (1.0) 85.3 (0.9) 80.4 (1.0) 81.5 (1.0) 81.5 (1.0 - no interaction)
Australian 72.1 (10.4) 84.1 (7.5) 92.5 (4.5) 100 (0) 100 (0 - no interaction)
Bands 48.3 (17.8) 47.3 (17.6) 58.5 (12.0) 58.7 (12.0) 58.8 (13.0)
Credit 81.3 (9.6) 88.7 (6.4) 92.0 (4.7) 87.7 (6.4) 87.7 (6.4 - no interaction)
German 52.0 (11.3) 54.6 (11.2) 69.2 (9.1) 54.5 (10)
Heart 80.3 (12.1) 78.7 (13.1) 86.3 (10.6) 82.2 (11.2) 84.5 (10.8)
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Bivariate interactions: Results

Medicine data

Table: Gini indices of our proposed quantization algorithm glmdisc-SEM
and two baselines: ALLR and ALLR with all pairwise interactions on
several medicine-related benchmark datasets.

Pima Breast Birthwt
ALLR 73.0 94.0 34.0

ALLR LR w. interactions 60.0 51.0 15.0
glmdisc 57.0 93.0 18.0

glmdisc w. interactions 62.0 95.0 54.0
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Bivariate interactions: Results

CACF data

Table: Gini indices (the greater the value, the better the performance) of
our proposed quantization algorithm glmdisc, the two baselines of
Table 4 and the current scorecard (manual / expert representation)
obtained on several portfolios of Crédit Agricole Consumer Finance.

Portfolio ALLR Current
performance

ad hoc
methods

Our proposal:
glmdisc-NN

Our proposal:
glmdisc-SEM

glmdisc-SEM
w. interactions

Automobile 59.3 (3.1) 55.6 (3.4) 59.3 (3.0) 58.9 (2.6) 57.8 (2.9) 64.8 (2.0)
Renovation 52.3 (5.5) 50.9 (5.6) 54.0 (5.1) 56.7 (4.8) 55.5 (5.2) 55.5 (5.2)
Standard 39.7 (3.3) 37.1 (3.8) 45.3 (3.1) 43.8 (3.2) 36.7 (3.7) 47.2 (2.8)
Revolving 62.7 (2.8) 58.5 (3.2) 63.2 (2.8) 62.3 (2.8) 60.7 (2.8) 67.2 (2.5)
Mass retail 52.8 (5.3) 48.7 (6.0) 61.4 (4.7) 61.8 (4.6) 61.0 (4.7) 60.3 (4.8)
Electronics 52.9 (11.9) 55.8 (10.8) 56.3 (10.2) 72.6 (7.4) 62.0 (9.5) 63.7 (9.0)
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Bivariate interactions: Results

Older results

Gini Current performance glmdisc Basic glm
Auto (n=50,000 ; d=15) 57.9 64.84 58

Revolving (n=48,000 ; d=9) 58.57 67.15 53.5
Prospects (n=5,000 ; d=25) 35.6 47.18 32.7
Electronics (n=140,000 ; d=8) 57.5 58 -10

Young (n=5,000 ; d=25) ≈ 15 30 12.2
Basel II (n=70,000 ; d=13) 70 71.3 19
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Segmentation: logistic regression trees
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Segmentation: logistic regression trees

Clients

pθ1(y |q{1}(x{1})
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Figure: Scorecards tree structure in acceptance system.
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Segmentation: logistic regression trees: Notations

K segments.

c ∈ {1, . . . ,K}: latent feature of the client’s segment.

We suppose there is a true segmentation c?,K ? and logistic
regressions θ?,c

?
at its leaves.

If we could evaluate all segmentations, the true one would be
selected by

argmax
c,K

K∑
c=1

BIC(θ̂c),

where θ̂c is the MLE of the logistic regression on .
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Segmentation: logistic regression trees: Model proposal

Similarly to the quantization proposal: ability to be in several
segments at a time.

p(y |x) =
K∑

c=1

pθ(y |x ; c)pβ(c |x).

c
(s+1)
i ∼ pθ·(s)(yi |x i )pβ(s)(·|x i ).

θc(s+1) = argmax
θc

n∑
i=1

1c(c
s+1)
i ) ln pθc (yi |x i , c).

β(s+1) = C4.5(c(s+1), x).
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Segmentation: logistic regression trees: Some results

Oracle = ALLR glmtree-SEM FAMD PLS LMT MOB
Gini 69.7 69.7 65.3 47.0 69.7 64.8

Oracle ALLR glmtree-SEM FAMD PLS LMT MOB
Gini 69.7 25.8 69.7 17.7 48.4 65.8 69.7



54/59

Bonus
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Bonus I

Big “unstructured” data
Some theoretical results about an ever bigger d (not the one you
think about though).

Online logistic regression
What if we dynamically adjusted logistic regression coefficients of a
given scorecard (still learnt on a cold database) on new data as
they come in?
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Bonus II

Profitability
Good / bad label is merely a proxy of the true performance
measure: profitability.
Already done: weighting observations by the amount of the loan
gives rise to roughly the same logistic regression coefficients.

Predicting IR3 in 2 months based on the month’s
applications
Current process: finance people, wait 3 months, if risk 6= budget
then adjust acceptance policy, wait 3 months again and repeat.
Couldn’t we anticipate by looking at the quality (e.g. through the
score) of the applications?
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Thanks!
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