Some thoughts about current Credit Scoring practices

Adrien Ehrhardt AGOS Machine Learning Day

20/06/2019

Table of Contents

Context and notations

Reject Inference

Feature quantization

Bivariate interactions

Segmentation: logistic regression trees

Bonus

Context and notations

Job	Home	Time in job	Family status	Wages	Repayment
Craftsman	Owner	20	Widower	2000	0
	Renter	10	Common-law	1700	1
Licensed profes- sional	Starter	5	Divorced	4000	0
Executive	By work	8	Single	2700	1
Office employee	Renter	12	Married	1400	NA
Worker	By family	2	?	1200	NA

Table: Dataset with outliers and missing values.

▲□▶
 ▲□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶
 4□▶

Job	Home	Time in job	Family status	Wages	Repayment
Craftsman	Owner	20	Widower	2000	0
	Renter	10	Common-law	1700	1
Licensed profes- sional	Starter	5	Divorced	4000	0
Executive	By work	8	Single	2700	1
Office employee	Renter	12	Married	1400	NA
Worker	By family	2	?	1200	NA

Table: Dataset with outliers and missing values.

↓□▶ 4 @ ▶ 4 @ ▶ 4 @ ▶ 2 9 9 9 0

- 1. Discarding rejected applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job	Home	Time in job	Family status	Wages		Repayment
Craftsman	Owner	20	Widower	2000		0
?	Renter	10	Common-law	1700		1
Licensed profes- sional	Starter	5	Divorced	4000		0
Executive	By work	8	Single	2700		1
Office employee		¥2		1400		NA
Worker		\$		1200		NA

Table: Dataset with outliers and missing values.

Э.

4/59

1. Discarding rejected applicants

- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status	Wages	Repayment
Craftsman			Widower	2000	0
?			Common-law	1700	1
Licensed profes- sional			Divorced	4000	0
Executive			Single	2700	1
Office employee	Renter	y2	Married	1400	NA
Worker	By_family	\$	1	1200	NA

Table: Dataset with outliers and missing values.

3

- 1. Discarding rejected applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Jop			Family status	Wages	Repayment
Craftsman			Widower]1500;2000]	0
?			Common-law]1500;2000]	1
Licensed profes- sional			Divorced]2000;∞[0
Executive			Single]2000;∞[1
Office employee	Renter	¥2	Married	1400	NA
Worker	By_family	2	1	1200	NA

Table: Dataset with outliers and missing values.

- 1. Discarding rejected applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status	Wages	Repayment
?+Low-qualified			?+Alone]1500;2000]	0
?+Low-qualified			Union]1500;2000]	1
High-qualified			?+Alone]2000;∞[0
High-qualified			?+Alone]2000;∞[1
Office employee	Benter	¥2	Married	1400	NA
Worker	By family	\$	1	1200	NA

Table: Dataset with outliers and missing values.

Э

4/59

- 1. Discarding rejected applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status x Wages	Repayment
?+Low-qualified			?+Alone ×]1500;2000]	0
?+Low-qualified			Union ×]1500;2000]	1
High-qualified			?+Alone x]2000;∞[0
High-qualified			?+Alone x]2000;∞[1
Office_employee	Benter	12	Married 1400	NA
Worker	By_family	\$	1200	NA

Table: Dataset with outliers and missing values.

- 1. Discarding rejected applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status × Wages	Repayment
?+Low-qualified			?+Alone ×]1500;2000]	0
?+Low-qualified			Union ×]1500;2000]	1
High-qualified			?+Alone ×]2000;∞[0
High-qualified			?+Alone x]2000; ∞ [1
Office employee	Benter	¥2	Married 1400	NA
Worker	By family	\$	1 1200	NA

Table: Dataset with outliers and missing values.

↓□▶ 4 @ ▶ 4 @ ▶ 4 @ ▶ 2 9 9 0 0

- 1. Discarding rejected applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Job			Family status × Wages	Score	Repayment
?+Low-qualified			?+Alone ×]1500;2000]	225	0
?+Low-qualified			Union ×]1500;2000]	190	1
High-qualified			?+Alone ×]2000;∞[218	0
High-qualified			?+Alone x]2000; ∞ [1
Office employee	Benter	<u>12</u>	Married 1400	NA	NA
Worker	By family	\$	1 1200	NA	NA

Table: Dataset with outliers and missing values.

- 1. Discarding rejected applicants
- 2. Feature selection
- 3. Discretization / grouping
- 4. Interaction screening
- 5. Segmentation
- 6. Logistic regression fitting

Random variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$

Random variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$

Observations:

 $\mathbf{x} = (x_1, \dots, x_d)$: characteristics. $x_j \in \mathbb{R}$ or $\{1, \dots, l_j\}$: e.g. rent amount, job, ... $y \in \{0, 1\}$: good or bad. $z \in \{f, nf\}$: financed or not financed.

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 월 - 의 역 · 5/59

Random variables: $\boldsymbol{X}, \boldsymbol{Y}, \boldsymbol{Z}$

Observations:

 $\mathbf{x} = (x_1, \dots, x_d)$: characteristics. $x_j \in \mathbb{R}$ or $\{1, \dots, l_j\}$: e.g. rent amount, job, ... $y \in \{0, 1\}$: good or bad. $z \in \{f, nf\}$: financed or not financed.

True distribution of good and bad clients: $p(y|\mathbf{x})$

▲□▶ ▲□▶ ▲壹▶ ▲壹▶ 壹 ∽९ペ 5/59

Need for a **computable model** that resembles p, often in the form of a **parametric** model $p_{\theta}(y|x)$, which we can calculate for a new client.

Need for a **computable model** that resembles p, often in the form of a **parametric** model $p_{\theta}(y|\mathbf{x})$, which we can calculate for a new client.

Example: logistic regression

$$\ln \frac{p_{\boldsymbol{\theta}}(1|\boldsymbol{x})}{(1-p_{\boldsymbol{\theta}}(1|\boldsymbol{x}))} = \boldsymbol{x}' \boldsymbol{\theta}$$

▲□▶▲□▶▲壹▶▲壹▶ 壹 ∽९ペ 6/59

Need for a **computable model** that resembles p, often in the form of a **parametric** model $p_{\theta}(y|x)$, which we can calculate for a new client.

Example: logistic regression

$$\ln rac{p_{m{ heta}}(1|m{x})}{(1-p_{m{ heta}}(1|m{x}))} = m{x}'m{ heta}$$

There is θ^* that makes p_{θ^*} "close" to p. $\theta^* = \operatorname{argmin}_{\theta} \mathbb{E}_{\mathbf{X}} [\operatorname{KL}(p||p_{\theta})] = \int_{\mathcal{X}} \sum_{y \in \{0,1\}} p(y|\mathbf{x}) \ln \frac{p(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})}.$

Well-specified model assumption

 $\mathbb{E}_{\boldsymbol{X}}[\mathsf{KL}(p||p_{\boldsymbol{\theta}^{\star}})] = 0,$ $p_{\boldsymbol{\theta}^{\star}}(y|\boldsymbol{x}) = p(y|\boldsymbol{x}).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

p is unknown: access to an i.i.d. n + n'-sample $\mathcal{T} = (\mathbf{x}_i, y_i, z_i)_1^{n+n'} \sim p.$

p is unknown: access to an i.i.d. n + n'-sample $\mathcal{T} = (\mathbf{x}_i, y_i, z_i)_1^{n+n'} \sim p$.

We can deduce from the KL divergence the (log-)likelihood:

$$\ell(oldsymbol{ heta};\mathcal{T}) = \sum_{i=1}^{n+n'} \ln p_{oldsymbol{ heta}}(y_i|oldsymbol{x}_i).$$

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 월 - 의 역 · 8/59

p is unknown: access to an i.i.d. n + n'-sample $\mathcal{T} = (\mathbf{x}_i, y_i, z_i)_1^{n+n'} \sim p$.

We can deduce from the KL divergence the (log-)likelihood:

$$\ell(oldsymbol{ heta};\mathcal{T}) = \sum_{i=1}^{n+n'} \ln p_{oldsymbol{ heta}}(y_i|oldsymbol{x}_i).$$

▲□▶ ▲□▶ ▲ 글▶ ▲ 글 ▶ 글 ♡ 𝔅 𝔅 8/59

The MLE $\hat{\theta} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{T})$ is a good approximation of θ^{\star} .

p is unknown: access to an i.i.d. n + n'-sample $\mathcal{T} = (\mathbf{x}_i, y_i, z_i)_1^{n+n'} \sim p$.

We can deduce from the KL divergence the (log-)likelihood:

$$\ell(oldsymbol{ heta};\mathcal{T}) = \sum_{i=1}^{n+n'} \ln p_{oldsymbol{ heta}}(y_i|oldsymbol{x}_i).$$

▲□▶ ▲□▶ ▲壹▶ ▲壹▶ 壹 ∽९ペ 8/59

The MLE $\hat{\theta} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{T})$ is a good approximation of θ^* . Unfortunately, $\hat{\theta}$ is not directly computable (no closed form solution).

p is unknown: access to an i.i.d. n + n'-sample $\mathcal{T} = (\mathbf{x}_i, y_i, z_i)_1^{n+n'} \sim p$.

We can deduce from the KL divergence the (log-)likelihood:

$$\ell(oldsymbol{ heta};\mathcal{T}) = \sum_{i=1}^{n+n'} \ln p_{oldsymbol{ heta}}(y_i|oldsymbol{x}_i).$$

The MLE $\hat{\theta} = \operatorname{argmax}_{\theta} \ell(\theta; \mathcal{T})$ is a good approximation of θ^* . Unfortunately, $\hat{\theta}$ is not directly computable (no closed form solution).

$$ilde{ heta} = \mathsf{Newton-Raphson}(\ell(m{ heta};\mathcal{T}))
eq \hat{m{ heta}}.$$

▲□▶ ▲□▶ ▲壹▶ ▲壹▶ 壹 ∽९ペ 8/59

All of this is "hidden" in your favourite statistical language / package / library but is essential to understanding Reject Inference.

Context and notations: Feature / model selection

Up to now, we assumed a parameter space Θ fixed.

Up to now, we assumed a parameter space Θ fixed.

Comparing models = different parameter spaces $\Theta^1, \Theta^2, \ldots$ Corresponding to feature subsets, different discretizations, interactions, ... since we don't know which parameter space is closest to the "truth" p.

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼 - 의 ۹ ℃ 10/59

Up to now, we assumed a parameter space Θ fixed.

Comparing models = different parameter spaces $\Theta^1, \Theta^2, \ldots$ Corresponding to feature subsets, different discretizations, interactions, ... since we don't know which parameter space is closest to the "truth" p.

Model selection tools

$$\hat{ heta}^{ ext{best}} = \operatorname*{argmin}_{\hat{ heta}^k \in \Theta^k} \mathsf{BIC}(\hat{ heta}^k) = -2\ell(\hat{ heta}^k,\mathcal{T}) + \dim(\Theta^k) \ln n.$$

▲□▶ ▲圖▶ ▲ 글▶ ▲ 글▶ 글 ∽ ९ ℃ 10/59

Up to now, we assumed a parameter space Θ fixed.

Comparing models = different parameter spaces $\Theta^1, \Theta^2, \ldots$ Corresponding to feature subsets, different discretizations, interactions, ... since we don't know which parameter space is closest to the "truth" p.

Model selection tools

$$\hat{ heta}^{ ext{best}} = \operatorname*{argmin}_{\hat{ heta}^k \in \Theta^k} \mathsf{BIC}(\hat{ heta}^k) = -2\ell(\hat{ heta}^k,\mathcal{T}) + \mathsf{dim}(\Theta^k) \ln n.$$

BIC has nice statistical properties (consistency) but can be swapped in the entire presentation with your favourite model selection tool like Gini on $\mathcal{T}^{\text{test}}$.

Reject Inference

▲□▶ < @▶ < 差▶ < 差▶ 差 외۹ ℃ 11/59</p>

Reject Inference: Industrial setting

Figure: Simplified Acceptance mechanism in Crédit Agricole Consumer Finance

Figure: Proportion of "final" lending decisions for CACF France

< □ > < 同 > < Ξ > < Ξ >

 $\mathcal{O} \diamond \mathcal{O}$

Reject Inference: Industrial setting

The observed data are the following:

We traditionally build a logistic regression using only financed clients (fixed parameter space Θ):

$$\hat{oldsymbol{ heta}}_{\mathsf{f}} = \mathop{\mathsf{argmax}}_{oldsymbol{ heta}} \ell(oldsymbol{ heta};\mathcal{T}_{\mathsf{f}})$$

which asymptotically approximates:

$$\theta_{f}^{\star} = \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{\boldsymbol{X}} [\mathsf{KL}(p||p_{\theta})|Z = f].$$

Reject Inference: Industrial setting

We wish we had:

$$\hat{oldsymbol{ heta}} = rgmax_{oldsymbol{ heta}} \ell(oldsymbol{ heta}; {f x}, {f y}), \ _{oldsymbol{ heta}}$$

which asymptotically approximates:

$$oldsymbol{ heta}^{\star} = \mathop{\mathrm{argmin}}_{oldsymbol{ heta}} \mathbb{E}_{oldsymbol{X}}[\mathsf{KL}(p||p_{oldsymbol{ heta}})].$$

But we lack y_{nf} .

Estimators :

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta}-\theta^{\star}) \xrightarrow[n,n'\to\infty]{\mathcal{L}} \mathcal{N}_{d+1}(0,\Sigma_{\theta^{\star}})$$

2. Current methodology:
$$\sqrt{n}(\hat{\theta}_{f} - \theta_{f}^{\star}) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{f, \theta_{f}^{\star}})$$

・□▶ ・□▶ ・ ミ ・ ミ ・ シ へ ○ 15/59

Estimators :

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta}-\theta^{\star}) \xrightarrow[n,n'\to\infty]{\mathcal{L}} \mathcal{N}_{d+1}(0,\Sigma_{\theta^{\star}})$$

2. Current methodology: $\sqrt{n}(\hat{\theta}_{f} - \theta_{f}^{\star}) \xrightarrow{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{f, \theta_{f}^{\star}})$

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ 글 りへぐ 15/59

Estimators :

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta} - \theta^{\star}) \xrightarrow[n,n' \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{\theta^{\star}})$$

2. Current methodology: $\sqrt{n}(\hat{\theta}_{f} - \theta_{f}^{\star}) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{f, \theta_{f}^{\star}})$

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ 글 りへぐ 15/59
Estimators :

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta}-\theta^{\star}) \xrightarrow[n,n'\to\infty]{\mathcal{L}} \mathcal{N}_{d+1}(0,\Sigma_{\theta^{\star}})$$

2. Current methodology: $\sqrt{n}(\hat{\theta}_{f} - \theta_{f}^{\star}) \xrightarrow{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{f, \theta_{f}^{\star}})$

▲□▶ ▲□▶ ▲ 글▶ ▲ 글▶ 글 りへぐ 15/59

Estimators :

1. "Oracle":
$$\sqrt{n+n'}(\hat{\theta}-\theta^{\star}) \xrightarrow[n,n'\to\infty]{\mathcal{L}} \mathcal{N}_{d+1}(0,\Sigma_{\theta^{\star}})$$

2. Current methodology: $\sqrt{n}(\hat{\theta}_{f} - \theta_{f}^{\star}) \xrightarrow[n \to \infty]{\mathcal{L}} \mathcal{N}_{d+1}(0, \Sigma_{f, \theta_{f}^{\star}})$

 $\label{eq:Question 1} \textbf{Question 1}: asymptotics of the estimators$

$$(Q1) \boldsymbol{\theta}^{\star} \stackrel{?}{=} \boldsymbol{\theta}_{f}^{\star}$$
$$(Q2) \boldsymbol{\Sigma}_{\boldsymbol{\theta}^{\star}} \stackrel{?}{=} \boldsymbol{\Sigma}_{f,\boldsymbol{\theta}_{f}^{\star}}$$

◆□ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ ♡ < ℃ 15/59</p>

Reject Inference: Missingness mechanism

MAR : ∀x, y, z, p(z|x, y) = p(z|x) → Acceptance is determined by an old score: Z = 1_{θ'X>cut}.
MNAR : ∃x, y, z, p(z|x, y) ≠ p(z|x) → Operators' "feeling" X̃ influence the acceptance. → Expert rules based on features X̃ not in X.

Figure: Dependencies between random variables Y, \tilde{X} , X and Z

Reject Inference: Model specification

- Well-specified model : p(y|x) = p_{θ*}(y|x). → With real data ⇒ hypothesis unlikely to be true.
- ► Misspecified model : θ* is the "best" in the Θ family. → Logistic regression commonly used for its robustness to misspecification (no assumption about p(x)).

▲□▶ ▲圖▶ ▲臺▶ ▲臺▶ 臺 少�♡ 17/59

Table: (Q1) and (Q2) w.r.t. model specification and missingness mechanism

Scope for action:

• Change model space Θ ,

Scope for action:

- Change model space Θ ,
- ▶ Model acceptance/rejection process (i.e. $p_{\gamma}(z|\mathbf{x}, y)$),

<□▶ < @▶ < \= ▶ \= ♡ < ♡ 18/59

Scope for action:

- Change model space Θ ,
- ► Model acceptance/rejection process (i.e. $p_{\gamma}(z|\mathbf{x}, y)$),

► Use x_{nf}.

Reject Inference: How to use x_{nf} ?

Question 2: How to construct a better estimator than $\hat{\theta}_{f}$?

Scope for action:

- Change model space Θ,
- Model acceptance/rejection process (i.e. $p_{\gamma}(z|\mathbf{x}, y))$,
- ► Use x_{nf}.

Natural way to achieve all three: generative approach

$$p_{\alpha}(\mathbf{x}, y, z) = p_{\beta_{\alpha}}(\mathbf{x})p_{\theta_{\alpha}}(y|x)p_{\gamma_{\alpha}}(z|\mathbf{x}, y).$$

$$\begin{split} (\widehat{\boldsymbol{\theta}_{\boldsymbol{\alpha}}}, \widehat{\boldsymbol{\beta}_{\boldsymbol{\alpha}}}, \widehat{\boldsymbol{\gamma}_{\boldsymbol{\alpha}}}) &= \operatorname*{argmax}_{\boldsymbol{\theta}_{\boldsymbol{\alpha}}, \boldsymbol{\beta}_{\boldsymbol{\alpha}}, \boldsymbol{\gamma}_{\boldsymbol{\alpha}}} \ell(\boldsymbol{\alpha}; \boldsymbol{x}, \boldsymbol{y}_{\mathsf{f}}) = \operatorname*{argmax}_{\boldsymbol{\theta}_{\boldsymbol{\alpha}}, \boldsymbol{\beta}_{\boldsymbol{\alpha}}, \boldsymbol{\gamma}_{\boldsymbol{\alpha}}} \sum_{i=1}^{n} \ln(p_{\boldsymbol{\theta}_{\boldsymbol{\alpha}}}(y_{i}|x_{i})) \\ &+ \sum_{i=1}^{n+n'} \ln(p_{\boldsymbol{\beta}_{\boldsymbol{\alpha}}}(\boldsymbol{x}_{i})) \left(+ \sum_{i=1}^{n} \ln(p_{\boldsymbol{\gamma}_{\boldsymbol{\alpha}}}(z_{i}|x_{i}, y_{i})) \right). \end{split}$$

Reject Inference: How to use x_{nf} ?

Question 2: How to construct a better estimator than $\hat{\theta}_{f}$?

Scope for action:

- ► Change model space ⊖ logistic regression,
- ▶ Model acceptance/rejection process (i.e. $p_{\gamma}(z|\mathbf{x}, y)$),

► Use x_{nf}.

Natural way to achieve all three: generative approach

$$p_{\alpha}(\boldsymbol{x}, y, z) = p_{\beta_{\alpha}}(\boldsymbol{x}) p_{\theta_{\alpha}}(y|\boldsymbol{x}) p_{\gamma_{\alpha}}(z|\boldsymbol{x}, y).$$

$$\begin{aligned} & (\widehat{\boldsymbol{\theta}_{\alpha}}, \widehat{\boldsymbol{\beta}_{\alpha}}, \widehat{\boldsymbol{\gamma}_{\alpha}}) = \operatorname*{argmax}_{\boldsymbol{\alpha}} \ell(\boldsymbol{\alpha}; \boldsymbol{x}, \boldsymbol{y}_{\mathrm{f}}) = \operatorname*{argmax}_{\boldsymbol{\theta}_{\alpha}, \boldsymbol{\beta}_{\alpha}, \boldsymbol{\gamma}_{\alpha}} \sum_{i=1}^{n} \ln(p_{\boldsymbol{\theta}_{\alpha}}(y_{i}|x_{i})) \\ & + \sum_{i=1}^{n+n'} \ln(p_{\boldsymbol{\beta}_{\alpha}}(\boldsymbol{x}_{i})) \left(+ \sum_{i=1}^{n} \ln(p_{\boldsymbol{\gamma}_{\alpha}}(z_{i}|x_{i}, y_{i})) \right). \end{aligned}$$

<□▶ < @ ▶ < \ > < \ > \ \ 2 \ \ 2 \ \ 2 \ \ 2 \ \ \ 18/59

Scope for action:

- ► Change model space ⊖ logistic regression,
- Model acceptance/rejection process (i.e. $p_{\gamma}(z|\mathbf{x}, y)$) γ cannot be estimated,

▲□▶ ▲圖▶ ▲ 글▶ ▲ 글▶ 글 ∽ ९ ℃ 18/59

► Use x_{nf}.

Scope for action:

- ► Change model space ⊖ logistic regression,
- Model acceptance/rejection process (i.e. $p_{\gamma}(z|\mathbf{x}, y)$) γ cannot be estimated,
- ► Use x_{nf}.

Remember that \mathcal{T}^{OOT} also comes from $p(y|\mathbf{x}, f)$ such that applying a *Reject Inference* method and getting a higher Gini is no guarantee that it would on the Through-the-Door population (on the contrary!).

For logistic regression, Reject Inference methods amount to:

Reject Inference: How to use x_{nf} ?

$\mathsf{Reclassification}^1$:

$$(\hat{\theta}^{\mathsf{CEM}}, \hat{\mathbf{y}}^{\mathsf{nf}}) = \operatorname*{argmax}_{\boldsymbol{\theta}, \mathbf{y}^{\mathsf{nf}}} \ell(\boldsymbol{\theta}; \mathcal{T}_{c}^{(1)}) \text{ where } \hat{\mathbf{y}_{i}} = \operatorname*{argmax}_{y_{i}} p_{\hat{\boldsymbol{\theta}}_{\mathsf{f}}}(y_{i} | \mathbf{x}_{i}).$$

Problem: inconsistent estimator.

Logistic regression curves depending on development sample

Reject Inference: How to use x_{nf} ?

Augmentation²: MAR / misspecified model.

$$\ell_{Aug}(\boldsymbol{\theta}; \mathcal{T}_{f}) = \sum_{i=1}^{n} \frac{1}{p(f|\boldsymbol{x}_{i})} \ln(p_{\boldsymbol{\theta}}(y_{i}|\boldsymbol{x}_{i})).$$

Problem: estimation of $p(f|x_i)$ + assumes $p(f|x_i) > 0$ (clearly not true).

Parcelling ³:

$$\ell(\theta; \mathbf{x}, \mathbf{y}_{\mathsf{f}}, \mathbf{\hat{y}}_{\mathsf{n}\mathsf{f}}) \text{ where } \hat{\mathbf{y}}_{i} = \begin{cases} 1 \text{ w.p. } \boldsymbol{\alpha}_{i} p_{\hat{\theta}_{\mathsf{f}}}(1|\mathbf{x}_{i}, \mathsf{f}) \\ 0 \text{ w.p. } 1 - \boldsymbol{\alpha}_{i} p_{\hat{\theta}_{\mathsf{f}}}(1|\mathbf{x}_{i}, \mathsf{f}) \end{cases}$$

Problem: MNAR assumptions hidden in $9_{nf}(\alpha_i)$ impossible to test.

▲□▶ ▲□▶ ▲ 글▶ ▲ 글 ▶ 글 ♡ Q ○ 21/59

²[4, 1, 2, 3] ³[4, 1, 2] All this stands for logistic regression and all "local" methods [5]. All "global" methods (explicit or implicit modelling of p(x)) will produce biased estimates under MAR.

We might have:

Gini	Logistic regression	Decision trees
Financed	40	45
Through-the-door	40	35

Feature quantization

▲□▶ < @▶ < 差▶ < 差▶ 差 ୬ % 23/59</p>

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖 · ⑦ Q @ 24/5

Some more notations I

Raw data

$$m{x} = (x_1, \dots, x_d)$$

 $x_j \in \mathbb{R}$ (continuous case)
 $x_j \in \{1, \dots, l_j\}$ (categorical case)
 $y \in \{0, 1\}$ (target)

Quantized data

$$egin{aligned} oldsymbol{q}(oldsymbol{x}) &= (oldsymbol{q}_1(x_1), \dots, oldsymbol{q}_d(x_d)) \ oldsymbol{q}_j(x_j) &= (oldsymbol{q}_{j,h}(x_j))_1^{m_j} \ (ext{one-hot encoding}) \ oldsymbol{q}_{j,h}(\cdot) &= 1 \ ext{if} \ x_j \in C_{j,h}, 0 \ ext{otherwise}, \ 1 \leq h \leq m_j \end{aligned}$$

<□▶ <@▶ < \>> < \</p>

Discretization

$$C_{j,h} = (c_{j,h-1}, c_{j,h}]$$

where $c_{j,1}, \ldots, c_{j,m_j-1}$ are increasing numbers called cutpoints, $c_{j,0} = -\infty$ and $c_{j,m_j} = +\infty$.

↓□ ▶ ▲ @ ▶ ▲ ≧ ▶ ▲ ≧ ▶ ▲ ⊇ ♪ ♡ 𝔅 𝔅 26/59

Some more notations III

Grouping

$$\bigsqcup_{h=1}^{m_j} C_{j,h} = \{1,\ldots,l_j\}.$$

Feature quantization: Existing approaches

You maximize an *ad hoc* criterion:

$$\hat{oldsymbol{q}} = \mathop{\mathrm{argmax}}_{oldsymbol{q}} \operatorname{CRIT}(\mathcal{T}_{\mathsf{f}}),$$

and hope that it's aligned with your original goal:

$$\hat{oldsymbol{ heta}}_{oldsymbol{\hat{q}}} = rgmax_{oldsymbol{ heta}}(oldsymbol{ heta}_{oldsymbol{ heta}};\mathcal{T}_{
m f}).$$

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ ↓ Ξ ♥ 𝔅 𝔅 28/59

Feature quantization: Approximation

$$oldsymbol{q}_{oldsymbol{lpha}_{j}}(\cdot) = ig(q_{oldsymbol{lpha}_{j,h}}(\cdot)ig)_{h=1}^{m_{j}} ext{ with } ig\{ igslim_{h=1}^{m_{j}} q_{oldsymbol{lpha}_{j,h}}(\cdot) = 1, \ 0 \leq q_{oldsymbol{lpha}_{j,h}}(\cdot) \leq 1, \ \end{array}$$

◆□▶ ◆□▶ ◆ 壹 ▶ ◆ 壹 ▶ ○ ○ ○ ○ 29/59

Feature quantization: Approximation

$$oldsymbol{q}_{oldsymbol{lpha}_{j}}(\cdot) = ig(q_{oldsymbol{lpha}_{j,h}}(\cdot)ig)_{h=1}^{m_{j}} ext{ with } \begin{cases} \sum_{h=1}^{m_{j}} q_{oldsymbol{lpha}_{j,h}}(\cdot) = 1, \\ 0 \le q_{oldsymbol{lpha}_{j,h}}(\cdot) \le 1, \end{cases}$$

For continuous features, we set for $\alpha_{j,h} = (\alpha_{j,h}^0, \alpha_{j,h}^1) \in \mathbb{R}^2$

$$q_{\boldsymbol{\alpha}_{j,h}}(\cdot) = \frac{\exp(\alpha_{j,h}^{0} + \alpha_{j,h}^{1} \cdot)}{\sum_{g=1}^{m_{j}} \exp(\alpha_{j,g}^{0} + \alpha_{j,g}^{1} \cdot)}$$

For categorical features, we set for $\alpha_{j,h} = (\alpha_{j,h}(1), \dots, \alpha_{j,h}(l_j)) \in \mathbb{R}^{l_j}$

$$q_{\alpha_{j,h}}(\cdot) = \frac{\exp\left(\alpha_{j,h}(\cdot)\right)}{\sum_{g=1}^{m_j} \exp\left(\alpha_{j,g}(\cdot)\right)}$$

≣ প[্] 29/59

Feature quantization: Estimation MAP

$$(\hat{\theta}, \hat{\alpha}) = \operatorname*{argmax}_{\theta, \alpha} \ell(\theta, \alpha; \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} p_{\theta}(y_i | \mathbf{q}_{\alpha}(\mathbf{x}_i)).$$

If there is a true quantization q^* , then $\alpha^* = \lim_{n \to \infty} \hat{\alpha}$ is such that $q_{\alpha^*} = q^*$.

$$(\hat{\theta}, \hat{\alpha}) = \operatorname*{argmax}_{\theta, \alpha} \ell(\theta, \alpha; \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} p_{\theta}(y_i | \mathbf{q}_{\alpha}(\mathbf{x}_i)).$$

If there is a true quantization q^* , then $\alpha^* = \lim_{n \to \infty} \hat{\alpha}$ is such that $q_{\alpha^*} = q^*$.

If not, $\boldsymbol{q}^{\text{MAP}}$ is "guaranteed" to be a good candidate quantization.

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼 - 의 역 (* 31/59)

$$(\hat{\theta}, \hat{\alpha}) = \operatorname*{argmax}_{\theta, \alpha} \ell(\theta, \alpha; \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} p_{\theta}(y_i | \mathbf{q}_{\alpha}(\mathbf{x}_i)).$$

If there is a true quantization q^* , then $\alpha^* = \lim_{n \to \infty} \hat{\alpha}$ is such that $q_{\alpha^*} = q^*$.

If not, q^{MAP} is "guaranteed" to be a good candidate quantization.

Problem: $\ell(\theta, \alpha; \mathbf{x}, \mathbf{y})$ cannot be directly maximized (it's not even convex).

<□ ▶ < □ ▶ < 三 ▶ < 三 ▶ < 三 ♪ ○ Q (31/59

$$(\hat{\theta}, \hat{\alpha}) = \operatorname*{argmax}_{\theta, \alpha} \ell(\theta, \alpha; \mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} p_{\theta}(y_i | \mathbf{q}_{\alpha}(\mathbf{x}_i)).$$

If there is a true quantization q^* , then $\alpha^* = \lim_{n \to \infty} \hat{\alpha}$ is such that $q_{\alpha^*} = q^*$.

If not, q^{MAP} is "guaranteed" to be a good candidate quantization.

Problem: $\ell(\theta, \alpha; \mathbf{x}, \mathbf{y})$ cannot be directly maximized (it's not even convex).

Solution: Resort to gradient descent (not guaranteed to converge to a global maximum!).

Feature quantization: Neural networks

< □ ▶ < □ ▶ < Ξ ▶ < Ξ ▶ < Ξ ▶ Ξ < 𝔅 𝔅 32/59

Estimation via neural networks

Continuous feature 0 at iteration 5

(a) Quantization $\hat{q}_{1}^{(s)}(x_{1})$ resulting from the MAP at iter t = 5 and $m_{max} = 3$. Continuous feature 0 at iteration 300

(b) Quantizations $\hat{q}_1^{(s)}(x_1)$ resulting from the MAP at iter t = 300 and $m_{\text{max}} = 3$.

We have drastically restricted the search space to clever candidates $\boldsymbol{q}^{\text{MAP}(1)},\ldots,\boldsymbol{q}^{\text{MAP}(\text{iter})}$ resulting from the the gradient descent steps.

 $(\boldsymbol{q}^{\star},\boldsymbol{\theta}^{\star}) = \operatorname{argmin}_{\boldsymbol{\hat{q}} \in \{\boldsymbol{q}^{\mathsf{MAP}(1)},\ldots,\boldsymbol{q}^{\mathsf{MAP}(\mathsf{tter})}\},\boldsymbol{\theta} \in \Theta_{\boldsymbol{m}}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\boldsymbol{\hat{q}}})$

We have drastically restricted the search space to clever candidates $\boldsymbol{q}^{\text{MAP}(1)},\ldots,\boldsymbol{q}^{\text{MAP}(\text{iter})}$ resulting from the the gradient descent steps.

$$(\boldsymbol{q}^{\star}, \boldsymbol{\theta}^{\star}) = \operatorname{argmin}_{\hat{\boldsymbol{q}} \in \{\boldsymbol{q}^{\mathsf{MAP}(1)}, \dots, \boldsymbol{q}^{\mathsf{MAP}(\mathsf{iter})}\}, \boldsymbol{\theta} \in \Theta_{m}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\hat{\boldsymbol{q}}})$$

<□ ▶ < □ ▶ < 亘 ▶ < 亘 ▶ < 亘 ▶ 34/59

We would still need to loop over candidates m!

We have drastically restricted the search space to clever candidates $\boldsymbol{q}^{\text{MAP}(1)},\ldots,\boldsymbol{q}^{\text{MAP}(\text{iter})}$ resulting from the the gradient descent steps.

$$(\boldsymbol{q}^{\star}, \boldsymbol{\theta}^{\star}) = \operatorname{argmin}_{\hat{\boldsymbol{q}} \in \{\boldsymbol{q}^{\mathsf{MAP}(1)}, \dots, \boldsymbol{q}^{\mathsf{MAP}(\mathsf{iter})}\}, \boldsymbol{\theta} \in \Theta_{m}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\hat{\boldsymbol{q}}})$$

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼 - 의 역 (****) 34/59

We would still need to loop over candidates m!

In practice if $\forall i, q_{\alpha_{j,h}}(x_j) \ll 1$, then level *h* disappears while performing the argmax.

We have drastically restricted the search space to clever candidates $\boldsymbol{q}^{\text{MAP}(1)}, \ldots, \boldsymbol{q}^{\text{MAP}(\text{iter})}$ resulting from the the gradient descent steps.

$$(\boldsymbol{q}^{\star}, \boldsymbol{\theta}^{\star}) = \operatorname{argmin}_{\hat{\boldsymbol{q}} \in \{\boldsymbol{q}^{\mathsf{MAP}(1)}, \dots, \boldsymbol{q}^{\mathsf{MAP}(\mathsf{iter})}\}, \boldsymbol{\theta} \in \Theta_{m}} \mathsf{BIC}(\hat{\boldsymbol{\theta}}_{\hat{\boldsymbol{q}}})$$

<□▶ < @ ▶ < \overline ₽ </p>

We would still need to loop over candidates m!

In practice if $\forall i, q_{\alpha_{j,h}}(x_j) \ll 1$, then level *h* disappears while performing the argmax.

Start with $\boldsymbol{m} = (m_{\max})_1^d$ and "wait" . . .

Originally (and as implemented in the R package glmdisc), the optimization was a bit different:
Originally (and as implemented in the R package glmdisc), the optimization was a bit different:

↓□▶ < □▶ < 三▶ < 三▶ < 三 < つへ ?? 35/59</p>

q is considered a latent (unobserved) feature;

Originally (and as implemented in the R package glmdisc), the optimization was a bit different:

- q is considered a latent (unobserved) feature;
- A classical EM algorithm is intractable since it requires an Expectation step over all possible quantizations;

▲□▶ ▲圖▶ ▲ 글▶ ▲ 글▶ 글 ∽ ९ ℃ 35/59

Originally (and as implemented in the R package glmdisc), the optimization was a bit different:

- q is considered a latent (unobserved) feature;
- A classical EM algorithm is intractable since it requires an Expectation step over all possible quantizations;

▲□▶ ▲圖▶ ▲ 글▶ ▲ 글▶ 글 ∽ ९ ℃ 35/59

• Solution: random draw \approx Bayesian statistics;

"Classical" estimation strategy with latent variables: EM algorithm.

"Classical" estimation strategy with latent variables: EM algorithm.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで 36/59

There would still be a sum over Q_m : $p(y|\mathbf{x}, \theta, \alpha) = \sum_{\mathbf{q} \in Q_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^d p_{\alpha_j}(\mathbf{q}_j|x_j)$

"Classical" estimation strategy with latent variables: EM algorithm.

▲□▶ ▲□▶ ▲ 壹▶ ▲ 壹▶ 壹 ∽ ९ ℃ 36/59

There would still be a sum over Q_m : $p(y|\mathbf{x}, \theta, \alpha) = \sum_{\mathbf{q} \in Q_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^d p_{\alpha_j}(\mathbf{q}_j|x_j)$

Use a Stochastic-EM! Draw *q* knowing that:

"Classical" estimation strategy with latent variables: EM algorithm.

There would still be a sum over \mathcal{Q}_{m} : $p(y|\mathbf{x}, \theta, \alpha) = \sum_{\mathbf{q} \in \mathcal{Q}_{m}} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^{d} p_{\alpha_{j}}(\mathbf{q}_{j}|x_{j})$

Use a Stochastic-EM! Draw **q** knowing that:

$$p(\boldsymbol{q}|\boldsymbol{x}, y) = \frac{p_{\boldsymbol{\theta}}(y|\boldsymbol{q}) \prod_{j=1}^{d} p_{\alpha_j}(\boldsymbol{q}_j|x_j)}{\sum_{\boldsymbol{q} \in \boldsymbol{Q}_m} p_{\boldsymbol{\theta}}(y|\boldsymbol{q}) \prod_{j=1}^{d} p_{\alpha_j}(\boldsymbol{q}_j|x_j)}$$
still difficult to calculate

"Classical" estimation strategy with latent variables: EM algorithm.

There would still be a sum over \mathcal{Q}_m : $p(y|\mathbf{x}, \theta, \alpha) = \sum_{\mathbf{q} \in \mathcal{Q}_m} p_{\theta}(y|\mathbf{q}) \prod_{j=1}^d p_{\alpha_j}(\mathbf{q}_j|x_j)$

Use a Stochastic-EM! Draw *q* knowing that:

$$p(\boldsymbol{q}|\boldsymbol{x}, y) = \frac{p_{\boldsymbol{\theta}}(y|\boldsymbol{q}) \prod_{j=1}^{d} p_{\alpha_j}(\boldsymbol{q}_j|x_j)}{\sum_{\boldsymbol{q} \in \boldsymbol{Q}_m} p_{\boldsymbol{\theta}}(y|\boldsymbol{q}) \prod_{j=1}^{d} p_{\alpha_j}(\boldsymbol{q}_j|x_j)}$$
still difficult to calculate

Gibbs-sampling step:

$$p(\boldsymbol{q}_j|\boldsymbol{x}, y, \boldsymbol{q}_{\{-j\}}) \propto p_{\boldsymbol{ heta}}(y|\boldsymbol{q}) p_{\boldsymbol{lpha}_j}(\boldsymbol{q}_j|x_j)$$

SEM-Gibbs: algorithm

Initialization

(×1,1	$x_{1,d}$)	(q _{1,1}	$q_{1,d}$
		at random		
•		\Rightarrow	•	
•		1 '	•	
\ × _{n,1}	× _{n,d})	$\langle q_{n,1} \rangle$	$q_{n,d}$)

Loop

$$\begin{pmatrix} y_{\mathbf{1}} \\ \vdots \\ y_{n} \end{pmatrix} \stackrel{\text{logistic}}{\Rightarrow} \begin{pmatrix} q_{\mathbf{1},\mathbf{1}} & \cdots & q_{\mathbf{1},d} \\ \vdots & \vdots & \vdots \\ q_{n,\mathbf{1}} & \cdots & q_{n,d} \end{pmatrix} \stackrel{\text{polytomous}}{\Rightarrow} \begin{pmatrix} x_{\mathbf{1},\mathbf{1}} & \cdots & x_{\mathbf{1},d} \\ \vdots & \vdots & \vdots \\ x_{n,\mathbf{1}} & \cdots & x_{n,d} \end{pmatrix}$$

Updating q

$$\left(\begin{array}{c} p(y_{1}, \boldsymbol{q}_{1,j} = k | \boldsymbol{x}_{i}) \\ \vdots \\ p(y_{n}, \boldsymbol{q}_{n,j} = k | \boldsymbol{x}_{i}) \end{array}\right) \xrightarrow{\text{random}} \left(\begin{array}{c} \boldsymbol{q}_{1,j} \\ \vdots \\ \vdots \\ \boldsymbol{q}_{n,j} \end{array}\right)$$

Calculating q^{MAP}

$$\left(\begin{array}{c} \mathbf{q}^{\mathsf{MAP},\mathbf{1},j} \\ \vdots \\ \mathbf{q}^{\mathsf{MAP},n,j} \end{array} \right) \begin{array}{c} \mathsf{MAP} \\ \mathsf{estimate} \\ = \end{array} \left(\begin{array}{c} \operatorname{argmax}_{q_j} \rho_{\alpha_j}(q_j|\mathbf{x}_{1,j}) \\ \vdots \\ \operatorname{argmax}_{q_j} \rho_{\alpha_j}(q_j|\mathbf{x}_{n,j}) \end{array} \right)$$

Simulated data

Table: For different sample sizes n, (A) Cl of $\hat{c}_{j,2}$ for $c_{j,2} = 2/3$. (B) Cl of \hat{m} for $m_1 = 3$. (C) Cl of \hat{m}_3 for $m_3 = 1$.

UCI data

Table: Gini indices (the greater the value, the better the performance) of our proposed quantization algorithm *glmdisc* and two baselines: ALLR and MDLP / χ^2 tests obtained on several benchmark datasets from the UCI library.

Dataset	ALLR	$MDLP/\chi^2$	glmdisc
Adult	81.4 (1.0)	85.3 (0.9)	80.4 (1.0)
Australian	72.1 (10.4)	84.1 (7.5)	92.5 (4.5)
Bands	48.3 (17.8)	47.3 (17.6)	58.5 (12.0)
Credit	81.3 (9.6)	88.7 (6.4)	92.0 (4.7)
German	52.0 (11.3)	54.6 (11.2)	69.2 (9.1)
Heart	80.3 (12.1)	78.7 (13.1)	86.3 (10.6)

CACF data

Table: Gini indices (the greater the value, the better the performance) of our proposed quantization algorithm *glmdisc*, the two baselines of Table 4 and the current scorecard (manual / expert representation) obtained on several portfolios of Crédit Agricole Consumer Finance.

Portfolio	ALLR	Current	$MDLP/\chi^2$	glmdisc
Automobile	59.3 (3.1)	55.6 (3.4)	59.3 (3.0)	58.9 (2.6)
Renovation	52.3 (5.5)	50.9 (5.6)	54.0 (5.1)	56.7 (4.8)
Standard	39.7 (3.3)	37.1 (3.8)	45.3 (3.1)	44.0 (3.1)
Revolving	62.7 (2.8)	58.5 (3.2)	63.2 (2.8)	62.3 (2.8)
Mass retail	52.8 (5.3)	48.7 (6.0)	61.4 (4.7)	61.8 (4.6)
Electronics	52.9 (11.9)	55.8 (10.8)	56.3 (10.2)	72.6 (7.4)

See this gist for χ^2 automated grouping tests.

Bivariate interactions

< □ ト < □ ト < 三 ト < 三 ト</p>

≧ り∢ぐ

41/59

Upper triangular matrix with $\delta_{k,\ell} = 1$ if $k < \ell$ and features p and q "interact" in the logistic regression.

$$\mathsf{logit}(p_{\boldsymbol{\theta}_f}(1|\boldsymbol{q}(\boldsymbol{x}))) = \theta_0 + \sum_{j=1}^d \theta_j^{\boldsymbol{q}_j(\boldsymbol{x}_j)} + \sum_{1 \leq k < \ell \leq d} \delta_{k,\ell} \theta_{k,\ell}^{\boldsymbol{q}_k(\boldsymbol{x}_k) f_\ell(\boldsymbol{x}_\ell)}$$

▲□▶ ▲□▶ ▲壹▶ ▲壹▶ 壹 ∽ ♀♡ ♀♡ 42/59

Upper triangular matrix with $\delta_{k,\ell} = 1$ if $k < \ell$ and features p and q "interact" in the logistic regression.

$$\mathsf{logit}(p_{m{ heta}_f}(1|m{q}(m{x}))) = heta_0 + \sum_{j=1}^d heta_j^{m{q}_j(m{x}_j)} + \sum_{1 \leq k < \ell \leq d} \delta_{k,\ell} heta_{k,\ell}^{m{q}_k(m{x}_k)f_\ell(m{x}_\ell)}$$

Imagine for now that the discretization q(x) is fixed. The criterion becomes:

$$(\boldsymbol{ heta}^{\star}, \boldsymbol{\delta}^{\star}) = rgmax_{\boldsymbol{ heta}, \boldsymbol{\delta} \in \{0, 1\}} \sum_{i=1}^{n} \ln p_{\boldsymbol{ heta}}(y_i | \boldsymbol{q}(\boldsymbol{x}_i), \boldsymbol{\delta}) - ext{penalty}(n; \boldsymbol{ heta})$$

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼 - 의 역 약 42/59

Upper triangular matrix with $\delta_{k,\ell} = 1$ if $k < \ell$ and features p and q "interact" in the logistic regression.

$$\mathsf{logit}(p_{m{ heta}_f}(1|m{q}(m{x}))) = heta_0 + \sum_{j=1}^d heta_j^{m{q}_j(m{x}_j)} + \sum_{1 \leq k < \ell \leq d} \delta_{k,\ell} heta_{k,\ell}^{m{q}_k(m{x}_k)f_\ell(m{x}_\ell)}$$

Imagine for now that the discretization q(x) is fixed. The criterion becomes:

$$(\boldsymbol{ heta}^{\star}, \boldsymbol{\delta}^{\star}) = rgmax_{\boldsymbol{ heta}, \boldsymbol{\delta} \in \{0, 1\}} \sum_{i=1}^{n} \ln p_{\boldsymbol{ heta}}(y_i | \boldsymbol{q}(\boldsymbol{x}_i), \boldsymbol{\delta}) - ext{penalty}(n; \boldsymbol{ heta})$$

↓ □ ▶ ↓ □ ▶ ↓ Ξ ▶ ↓ Ξ ▶ ↓ Ξ ♪ 𝔅 𝔅 42/59

Analogous to previous problem: $2^{\frac{d(d-1)}{2}}$ models.

Bivariate interactions: Model proposal

 δ is latent and hard to optimize over: use a stochastic algorithm!

 δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm. **Idea:** Propose "clever" interactions and accept / reject them based on the BIC criterion of the resulting logistic regression.

<□▶ < □▶ < □▶ < 三▶ < 三▶ < 三 < ○ < ○ </p>

Bivariate interactions: Model proposal

 δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm. **Idea:** Propose "clever" interactions and accept / reject them based on the BIC criterion of the resulting logistic regression.

$$p(y|oldsymbol{q} = \sum_{\delta \in \{0,1\}^{rac{d(d-1)}{2}}} p(y|oldsymbol{q}, \delta) p(\delta)$$
 $p(\delta|oldsymbol{q}, y) \propto \exp(-\mathsf{BIC}[\delta]/2) p(\delta)$

▲□▶ ▲圖▶ ▲臺▶ ▲臺▶ 臺 외익(43/59)

 δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm. **Idea:** Propose "clever" interactions and accept / reject them based on the BIC criterion of the resulting logistic regression.

$$p(y|\boldsymbol{q}) = \sum_{\boldsymbol{\delta} \in \{0,1\}^{\frac{d(d-1)}{2}}} p(y|\boldsymbol{q},\boldsymbol{\delta})p(\boldsymbol{\delta})$$
$$p(\boldsymbol{\delta}|\boldsymbol{q},y) \propto \exp(-\mathsf{BIC}[\boldsymbol{\delta}]/2)p(\boldsymbol{\delta}) \qquad p(\delta_{p,q}) = \frac{1}{2}$$

▲□▶ ▲圖▶ ▲臺▶ ▲臺▶ 臺 외익(43/59)

 δ is latent and hard to optimize over: use a stochastic algorithm!

Strategy used here: Metropolis-Hastings sampling algorithm. **Idea:** Propose "clever" interactions and accept / reject them based on the BIC criterion of the resulting logistic regression.

 $p(y|\boldsymbol{q}) = \sum_{\boldsymbol{\delta} \in \{0,1\}^{\frac{d(d-1)}{2}}} p(y|\boldsymbol{q}, \boldsymbol{\delta}) p(\boldsymbol{\delta})$ $p(\boldsymbol{\delta}|\boldsymbol{q}, y) \propto \exp(-\mathsf{BIC}[\boldsymbol{\delta}]/2) p(\boldsymbol{\delta}) \qquad p(\boldsymbol{\delta}_{p,q}) = \frac{1}{2}$ Which transition proposal $q : (\{0,1\}^{\frac{d(d-1)}{2}}, \{0,1\}^{\frac{d(d-1)}{2}}) \mapsto [0;1]?$

We restrict changes to only one entry $\delta_{k,\ell}$.

We restrict changes to only one entry $\delta_{k,\ell}$.

Proposal: gain/loss in BIC between **bivariate** models with / without the interaction.

<□ ▶ < @ ▶ < \ ≥ ▶ < \ ≥ り \ < 44/59

We restrict changes to only one entry $\delta_{k,\ell}$.

Proposal: gain/loss in BIC between **bivariate** models with / without the interaction.

If the interaction between two features is meaningful when only these two features are considered, there is a (provably) good chance that it will be in the full multivariate model.

We restrict changes to only one entry $\delta_{k,\ell}$.

Proposal: gain/loss in BIC between **bivariate** models with / without the interaction.

If the interaction between two features is meaningful when only these two features are considered, there is a (provably) good chance that it will be in the full multivariate model.

Trick: alternate one discretization / grouping step and one "interaction" step.

Données UCI

Table: Gini indices (the greater the value, the better the performance) of our proposed quantization algorithm *glmdisc* and two baselines: ALLR and MDLP / χ^2 tests obtained on several benchmark datasets from the UCI library.

Dataset	ALLR	ad hoc methods	Our proposal: glmdisc-NN	Our proposal: <i>glmdisc</i> -SEM	glmdisc-SEM w. interactions
Adult	81.4 (1.0)	85.3 (0.9)	80.4 (1.0)	81.5 (1.0)	81.5 (1.0 - no interaction)
Australian	72.1 (10.4)	84.1 (7.5)	92.5 (4.5)	100 (0)	100 (0 - no interaction)
Bands	48.3 (17.8)	47.3 (17.6)	58.5 (12.0)	58.7 (12.0)	58.8 (13.0)
Credit	81.3 (9.6)	88.7 (6.4)	92.0 (4.7)	87.7 (6.4)	87.7 (6.4 - no interaction)
German	52.0 (11.3)	54.6 (11.2)	69.2 (9.1)	54.5 (10)	
Heart	80.3 (12.1)	78.7 (13.1)	86.3 (10.6)	82.2 (11.2)	84.5 (10.8)

Medicine data

Table: Gini indices of our proposed quantization algorithm *glmdisc*-SEM and two baselines: ALLR and ALLR with all pairwise interactions on several medicine-related benchmark datasets.

	Pima	Breast	Birthwt
ALLR	73.0	94.0	34.0
ALLR LR w. interactions	60.0	51.0	15.0
glmdisc	57.0	93.0	18.0
glmdisc w. interactions	62.0	95.0	54.0

CACF data

Table: Gini indices (the greater the value, the better the performance) of our proposed quantization algorithm *glmdisc*, the two baselines of Table 4 and the current scorecard (manual / expert representation) obtained on several portfolios of Crédit Agricole Consumer Finance.

Portfolio	ALLR	Current performance	<i>ad hoc</i> methods	Our proposal: glmdisc-NN	Our proposal: glmdisc-SEM	glmdisc-SEM w. interactions
Automobile	59.3 (3.1)	55.6 (3.4)	59.3 (3.0)	58.9 (2.6)	57.8 (2.9)	64.8 (2.0)
Renovation	52.3 (5.5)	50.9 (5.6)	54.0 (5.1)	56.7 (4.8)	55.5 (5.2)	55.5 (5.2)
Standard	39.7 (3.3)	37.1 (3.8)	45.3 (3.1)	43.8 (3.2)	36.7 (3.7)	47.2 (2.8)
Revolving	62.7 (2.8)	58.5 (3.2)	63.2 (2.8)	62.3 (2.8)	60.7 (2.8)	67.2 (2.5)
Mass retail	52.8 (5.3)	48.7 (6.0)	61.4 (4.7)	61.8 (4.6)	61.0 (4.7)	60.3 (4.8)
Electronics	52.9 (11.9)	55.8 (10.8)	56.3 (10.2)	72.6 (7.4)	62.0 (9.5)	63.7 (9.0)

Older results

Gini	Current performance	glmdisc	Basic glm
Auto (n=50,000 ; d=15)	57.9	64.84	58
Revolving (n=48,000 ; d=9)	58.57	67.15	53.5
Prospects (n=5,000 ; d=25)	35.6	47.18	32.7
Electronics (n=140,000 ; d=8)	57.5	58	-10
Young (n=5,000 ; d=25)	pprox 15	30	12.2
Basel II (n=70,000 ; d=13)	70	71.3	19

Segmentation: logistic regression trees

▲□ ▶ < @ ▶ < \overline \ < \overline \

Segmentation: logistic regression trees

Figure: Scorecards tree structure in acceptance system.

 $c \in \{1, \ldots, K\}$: latent feature of the client's segment.

 $c \in \{1, \ldots, K\}$: latent feature of the client's segment.

We suppose there is a true segmentation c^* , K^* and logistic regressions θ^{*,c^*} at its leaves.

 $c \in \{1, \ldots, K\}$: latent feature of the client's segment.

We suppose there is a true segmentation c^* , K^* and logistic regressions θ^{*,c^*} at its leaves.

If we could evaluate all segmentations, the true one would be selected by

$$\underset{c, \mathcal{K}}{\operatorname{argmax}} \sum_{c=1}^{\mathcal{K}} \mathsf{BIC}(\hat{\theta}^{c}),$$

<□ ▶ < @ ▶ < \ext{blue} ▼ < \ext{blue} ▶ \ext{blue} \ext{blue} \$\frac{1}{59}\$</p>

where $\hat{ heta}^c$ is the MLE of the logistic regression on .
Similarly to the quantization proposal: ability to be in several segments at a time.

Similarly to the quantization proposal: ability to be in several segments at a time.

$$p(y|\mathbf{x}) = \sum_{c=1}^{K} p_{\boldsymbol{\theta}}(y|\mathbf{x}; c) p_{\beta}(c|\mathbf{x}).$$

Similarly to the quantization proposal: ability to be in several segments at a time.

$$p(y|\mathbf{x}) = \sum_{c=1}^{K} p_{\boldsymbol{ heta}}(y|\mathbf{x}; c) p_{\boldsymbol{eta}}(c|\mathbf{x}).$$

$$c_i^{(s+1)} \sim p_{\boldsymbol{\theta}^{\cdot(s)}}(y_i | \boldsymbol{x}_i) p_{\beta^{(s)}}(\cdot | \boldsymbol{x}_i).$$

▲□▶ ▲圖▶ ▲ 글▶ ▲ 글▶ 글 ∽ ९ ℃ 52/59

Similarly to the quantization proposal: ability to be in several segments at a time.

$$p(y|\mathbf{x}) = \sum_{c=1}^{K} p_{\boldsymbol{ heta}}(y|\mathbf{x}; c) p_{\boldsymbol{eta}}(c|\mathbf{x}).$$

$$c_i^{(s+1)} \sim p_{\boldsymbol{\theta}^{\cdot(s)}}(y_i | \boldsymbol{x}_i) p_{\beta^{(s)}}(\cdot | \boldsymbol{x}_i).$$

$$heta^{c(s+1)} = \operatorname*{argmax}_{ heta^c} \sum_{i=1}^n \mathbbm{1}_c(c_i^{s+1}) \ln p_{ heta^c}(y_i | oldsymbol{x}_i, c).$$

▲□▶ ▲@▶ ▲ ≧▶ ▲ ≧ ▶ ○ ♥ ♥ € 52/59

Similarly to the quantization proposal: ability to be in several segments at a time.

$$p(y|\mathbf{x}) = \sum_{c=1}^{K} p_{\boldsymbol{ heta}}(y|\mathbf{x}; c) p_{\boldsymbol{eta}}(c|\mathbf{x}).$$

$$c_i^{(s+1)} \sim p_{\boldsymbol{\theta}^{\cdot(s)}}(y_i|\boldsymbol{x}_i)p_{\beta^{(s)}}(\cdot|\boldsymbol{x}_i).$$

$$\theta^{c(s+1)} = \operatorname*{argmax}_{\theta^c} \sum_{i=1}^n \mathbbm{1}_c(c_i^{s+1}) \ln p_{\theta^c}(y_i | \mathbf{x}_i, c).$$

$$\beta^{(s+1)} = C4.5(c^{(s+1)}, x).$$

	Oracle = ALLR		glmtree-SEM	FAMD	PLS	LMT	MOB
Gini	69.7		69.7	65.3	47.0	69.7	64.8
	Oracle	ALLR	<i>σlmtree</i> -SFM	FAMD	PIS	ІМТ	MOB
	Oracic		ginnice SEM		1 25		
Gini	69.7	25.8	69.7	17.7	48.4	65.8	69.7

Big "unstructured" data

Some theoretical results about an ever bigger d (not the one you think about though).

Online logistic regression

What if we dynamically adjusted logistic regression coefficients of a given scorecard (still learnt on a cold database) on new data as they come in?

↓ □ ▶ ↓ □ ▶ ↓ = ▶ ↓ = 𝒴 𝒴 𝒴 𝔅 55/59

Bonus II

Profitability

Good / bad label is merely a proxy of the true performance measure: profitability.

<u>Already done</u>: weighting observations by the amount of the loan gives rise to roughly the same logistic regression coefficients.

Predicting IR3 in 2 months based on the month's applications

Current process: finance people, wait 3 months, if risk \neq budget then adjust acceptance policy, wait 3 months again and repeat. Couldn't we anticipate by looking at the quality (*e.g.* through the score) of the applications?

Thanks!

▲□▶ 4個▶ 4 差▶ 4 差▶ 差 の Q @

57/59

References I

- John Banasik and Jonathan Crook. "Reject inference, augmentation, and sample selection". In: <u>European Journal of Operational Research</u> 183.3 (2007), pp. 1582–1594. url: http://www.sciencedirect.com/science/ article/pii/S0377221706011969 (visited on 08/25/2016).
- Asma Guizani et al. "Une Comparaison de quatre Techniques d'Inférence des Refusés dans le Processus d'Octroi de Crédit". In: 45 èmes Journées de statistique. 2013. url:

http://cedric.cnam.fr/fichiers/art_2753.pdf (visited on 08/25/2016).

📔 🛛 Ha Thu Nguyen.

Reject inference in application scorecards: evidence from France.

Tech. rep. University of Paris West-Nanterre la Défense, EconomiX, 2016. url:

http://economix.fr/pdf/dt/2016/WP_EcoX_2016-10.pdf (visited on 08/25/2016).

Françoise Fogelman Soulié and Emmanuel Viennet. "Le Traitement des Refusés dans le Risque Crédit". In: <u>Revue des Nouvelles Technologies de l'Information</u> Data Mining et Apprentissage Statistique : application en assurance, banque et marketing, RNTI-A-1 (2007), pp. 22–44.

Bianca Zadrozny. "Learning and evaluating classifiers under sample selection bias". In: Proceedings of the twenty-first international conference on Machine learnin ACM. 2004, p. 114.

▲□▶ ▲圖▶ ▲ 볼▶ ▲ 볼▶ 볼 ~ 의 ९ 약 59/59